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Structural features of various molecular systems with symmetry of point groups ranging
from C| to the icosahedral symmetry are analyzed in the framework of the model suggested
previously for the evaluation of order and disorder in the arrangement of atoms in a molecule
based on the equation Q = | — P/3n (where Q is the index of order, and P is the number of
independent coordinates needed to fix an n-atomic molecule in the Cartesian coordinate
system). The Q value depends on various structural parameters of the molecule: the number
of atoms in it, the symmetry, the dimensionality, and the number of structural degrees of
freedom. The disorder index P/3n = | — ( correlates with Shannon’s entropy of informa-
tion, and Q correlates with negentropy or excess information; this makes it possible to use
P/3n as a new geometrical information molecular index that is obtained by a non-
probabilistic method. Analysis of the relationship between order and chaos in molecular
systems, as well as of the specific order index ¢ = Q/n, makes it possible to identify both
general and specific features of molecules.
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Introduction

The probiem of chaos and order and their relation-
ship in particular systems occupies one of prominent
places in the structure of scientific knowledge. It is
tackled not only in such branches of science as chemis-
try, physics, and cybernetics,!=5 but even in medicine,
psychology, economics, sociology, efc. In these cases,
absolutely different objects are considered, and order is
generally taken to mean correlations in space and time.
In the present paper we analyze the problem of the
structural (geometrical) order in molecules.

The concept of structural order/disorder is tradition-
ally related to the presence of so-called long-range

order, i.e., translational invariance typical of the crystal-
line state; in this sense, order corresponds to a crystal
with long-range order, and chaos is associated with a
gas, a liquid, or a glass. During studies on the structure
of matter, it becomes clear that no sharp boundary
between chaos and order exists, and then the corre-
sponding assumptions are introduced. For example, it is
common knowledge that noncrystalline materials are
characterized by short-range order determined by chemi-
cal bonds within the limits of 1-2 coordination spheres
around an arbitrarily chosen atom (see, for example
Ref. 5). Furthermore, the notion of "medium-range
order" has been introduced to describe the situation in
noncrystalline substances, for example in glasses and
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glass-forming liquids. The medium-range order occurs
at distances of up to tenths of &ngstroms.% Like the long-
range order in crystals, the medium-range order is mani-
fested in the X-ray diffraction pattern of a sample as so-
called first sharp diffraction peak, whose nature is being
actively debated now.”-3

Thus the concepts of disorder (chaos) and order
appeal first of all to the kinds of order that can be
detected experimentally. A. I. Kitaigorodsky? proposed
the following classification of states of order: (1) order
viz., ideal crystal without defects, (2) chaos, viz., a gas
without short-range order; (3) disorder in the order (for
example, defects in crystals); (4) order in the disorder
(for example, liquid crystals with orienational and short-
range order but without long-range order or liquids with
short-range order). Real situations can be represented as
mixtures of the above states.

All the foregoing refers to order and chaos in macro-
scopic systems and not to individual molecules, al-
though it is clear that molecules can differ not only in
symmetry but also in the degree of order. No quantita-
tive evaluation of order and chaos applied to molecules
{(or to systems or media consisting of these molecules)
existed before the entropy of information was intro-
duced. The example of four-stage description of order
and chaos presented above was purely qualitative.

The problem of introducing a universal numerical

characteristic of a structure, which would characterize

the relationship between the order and chaos in it, is
quite timely, since there is a great variety of molecules
in existence. The symmetry of molecules varies from the
lowest symmetry corresponding to the C; (1) point group
(the common position multiplicity, i.e., the number of
symmetry operations after which the molecule remains
invariant, M, is given in parentheses) to icosahedral
symmetry [, (120).

One of the key probiems in chemistry and physics as
well as in materials technology is the relationship be-
tween composition, structure, and properties, which is
intimately connected to the problem of order and chaos
and to the relationship between them. Regarding mole-
cules, their structures and properties in the gas, liquid,
and solid phases may be substantially dissimilar. The
condensed solid phase may have a "liquid-like” (for
example, glassy) structure or a crystalline structure.
Thus the composition—structure—properties triad should
be supplemented by an integral numerical (scalar)
description of a molecule, which would, on the one
hand, reflect its structure and, on the other hand, char-
acterize order and chaos and the relationship between
them.

Composition
®
Chaos
@ Structure «<— Number | ———
Order
®
Properties

This would permit not only the comprehensive de-
scription of separate molecules but also their generzl
systematization and comparison in various series based
on modern information theory and the theory of molecu-
lar graphs.

The above-noted structural physical and chemical
heterogeneity (complexity, diversity, or inhomogeneity)
of a molecule reflect the disorder in the arrangement of
its atoms. In the statistical thermodynamics, disorder is
usually characterized by the Boltzmann entropy § =
—kIn W, however, in our case, this value cannot be used
if for no other reason than that it refers only to statisti-
cally big ensembles. This limitation can be overcome by

switching over to the information entropy introduced by
Shannon.1?

N
H(x))= "§ pi(x;)logy pi(x), 2pi =1, Q)

where p; is the probability of the outcome x; of the
experiment, which should be calculated in each particu-
lar case. For example, if only the chemical composition
of a molecule is taken into account, the calculation by
Eq. (1) gives the corresponding information index of the
chemical composition H = [I; and with allowance for
only the topology of a molecule, which is reflected by its
structural graph, this calculation affords the information
topological index H = [, efc. These indices are ex-
pressed in terms of information units (bits) and are
numerical measures of the heterogeneity or structural
complexity of molecules. At present, they are widely
used to establish correlations between structures and
properties of molecules, mostly for organic and bioor-
ganic molecules (see, for example, Refs 11—19). In the
case of inorganic compounds and solids (crystals and
glasses, including those with defects), which cannot be
described by a molecular graph, the information topo-
logical approach has been much more poorly developed.

The information approach, which uses the Shannon
entropy of information, is probabilistic. At present, non-
probabilistic approaches to the determination of infor-
mation are also being developed. One of these is the
Koimogorov approach based on the idea of the epsilon-
entropy (combinatorial approach) and on the algorith-
mic determination of the quantity of information,20-2!
the approach of Ingarden and Urbanek,2? etc. In this
paper, we also describe a nonprobabilistic approach in
which the degree of order/disorder is evaluated by a
procedure based only on geometrical considerations.23-24
The application of this method to molecules is consid-
ered in detail below (in particular, from the standpoint
of information theory); for this purpose, a new notion,
viz., geometrical molecular index, is introduced.

We do not deal with the condensed state of matter;
however, all the results obtained here can be extended to
it by treating, for example, a solid as a set of molecules
“fastened” to the equilibrium positions. With certain
assumptions, this approach can also be applied to a
macroscopic gas or to a liquid, but it is necessary to take
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into account the fact that in these cases, the analyzed
state is merely an instantaneous picture of the molecules
in space. Translational motions of atoms such as diffu-
sion, which are typical of gases and liquids and also take
place in real solids, or atomic motions with large ampli-
tudes (characteristic of glasses)?S and, hence, the corre-
sponding types of order are not taken into account in
this approach.

Cyclic molecules
Regular polygons

The index of order is calculated from the formula?3.24
=T @

where P is the number of independent coordinates (po-
sitional parameters), which fix a group consisting of n
points in an arbitrary system of coordinates. We chose
the Cartesian coordinates. For example, for n = 1 (a
separate point), P= 3 and Q = 0; for a set of n
randomly arranged points, P = 3nand Q = 0; for a line
of a specified length (one stable spatial link is intro-
duced for two points, and thus the P value decreases
from 6 = 2- 3 for disconnected points to 6 — | = 5 for
connected points), @ = 0.167; for an isosceles triangle,-
Q = 0.111, etc. In this study, points denote atoms,
groups of points stand for molecules consisting of n
atoms, and the spatial links correspond to chemical
bonds in a molecule. Let us begin with the simplest case
of regular polygons and molecules represented by them.
Along with the Q values calculated from Eq. (2),
Table | presents the Schoenflies point groups of symme-
try and common position multiplicities (in parentheses)
as well as specific indices of order ¢ = Q/n. We could
not find exact molecular analogs of regular polygons
except molecules like S; with the Dy, symmetry existing
in the gas phase. The other examples correspond to a
carbon framework or a metallic framework of a cluster
without ligands. The order in these molecules is actually
much higher than in the framework, since, if ligands are
taken into account, the n value increases. Triangles,
tetragons, and pentagons are frequently found as faces in
polyhedral molecules reflected by regular polyhedra.
The order indices Q and the types of symmetry
(common position multiplicities) for regular polygons,
the limiting case of which is a circle with n = o and
Q = 1, vary in parallel but not linearly (see Table 1).

Irregular polygons

Moilecules represented by irregular polygons are fairly
abundant.26:27 One should distinguish actually irregular
polygons in which all the interatomic distances are
different, and semiirregular polygons, which incorporate

groups of equal interatomic distances corresponding to
identical chemical bonds.

Let us consider the case of irregular polygons in
relation to the S molecule, which is of interest because
it is formed not only in the gas phase but also in some
biological objects and, in addition, it exists in the molecu-
lar-crystalline state.28 Four isomers of this molecule are
known; three of them have symmetry of the C; point
group (a boat, a cage, and a chair) and the fourth isomer
has C, symmetry. All the isomers are characterized by
equal numbers of symmetry operations (M = 2) and
identical order indices @ =1 — 12/(3+9) = 0.567. Note
that the order in the Sy molecule proves to be much
lower than in the corresponding regular polygon with
Dy, symmetry, for which @ = 1 — 7/(3-9) = 0.741,
which looks quite reasonable.

Numerous examples of homoatomic rings represented
by irregular polygons can be given even for n > 6 (for
example, the Seg?™ ion), whereas for regular polygons,
only rings with n = 3 or C-frameworks ((uor example,
CsHs, C;H4, and CygHyg) are known. Thus, transition to
irregular polygons leads not only to a decrease in the
symmetry and order but also, as a consequence, to an
increase in the probability of the occurrence of
polyatomic molecules.

Table 1. Symmetry and order indices in regular polygons

..

Figure n  Symmetry Q Examples
of molecules

(ions)

A 3 Dy (12y 0222 0.074 S3

i——-_—i 4 Dyp(16) 0417 0.104 C4Hy
(C-framework)

Q 5 Ds,(20)  0.533 0.107 CsHs
(C-framework)

O 6 Dgu(24) 0611 0.102 CgHg
(C-framework)

O 7 D7,(28) 0.667  0.095 C.H,
(C-framework)

O 8 Dgy(32)  0.708 0.089 CgHg
(C-framework)

Q © Dop(0) 1000  0.000 —
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Chain molecules

The world of chain molecules is enormous and em-
braces all branches of chemistry. There exist low-molecu-
lar-weight monomeric and oligomeric molecules incor-
porating relatively small numbers of atoms and macro-
molecules with n = 103—103, as well as giant polymeric
macromolecules containing up to 10% atoms, viz,
—[CH,],— type organic molecules and —[S(or Se)},—
or —[PNCl,],— type inorganic molecules.

Let us consider chains of the —[S],— type. Accord-
ing to experimental data, in a polymer chain in the
amorphous state, interatomic distances R are fixed pa-
rameters, whereas the bond angles and torsion angles
can vary. For comparison, we shall consider the depen-
dence of the order index on the number of atoms in the
chain for three model cases (Fig. 1):

(1) constant interatomic distances, bond angles, and
torsion angles

8
Q|=[_§§ 3)

(2) constant interatomic distances and bond angles and
varying torsion angles

Q=l-—===3"3 4)

(3) constant interatomic distances and varying bond and

torsion angles

O =1-T =0 )

Each set of the structural degrees of freedom (SDF)
corresponding to Eqgs. (3)—(5) is described by its own
curve and by its own limit of the Q value, the addition of
a further SDF decreasing limQ by one third

0
1.0 /I_,__.
08T I
0.6 2
0.4

‘;;::_;——‘-—-:”
3

0.2

0 2 3logn

Fig. 1. Dependence of the order index on the number of
atoms in chain molecules. The following parameters in the
chains are constant: interatomic distances and bond and tor-
sion angles (/); interatomic distances and bond angles (2);
interatomic distances (J).

(1-50.667—0.333) (see Fig. 1, curves /—3). In the hypo-
thetical case where all three SDF are realized, i.e.,
where all angles and distances are variable, there is no
order (Q = 0), since the number of independent coordi-
nates (P) in Eq. (2) is 3n.

In the second and third cases (@, and (), the
symmetry of the chain molecule as a whole is C| (the
molecule is asymmetrical), whereas an elementary unit
S; (angle) has symmetry of the C;, point group. Thus,
the absence of symmetry in polymeric molecules as a
whole does not mean that there is no order, since Q > 0.
In this case, spontaneous ordering occurs, depending on
the number of structural degrees of freedom in a poly-
meric chain of length n. Giant polymeric biomolecules
can coil into globules or, conversely, can uncoil into
polymeric bundle filaments as occurs in muscles. Deox-
yribonucleic acid is a double-stranded helix in which the
order is higher than in a single helix, due to the appear-
ance of joints formed via hydrogen bonds.

Polyhedral molecules
Regular polyhedra

Five regu..r polyhedra called Platonic solids are
known: tetrahedron, cube (hexahedron), octahedron, do-
decahedron, and icosahedron. These polyhedra form the
basis for many molecules (examples of these molecules are
cited in Table 2). The number of atoms in the molecules
can exceed the number of vertices of the corresponding
regular polyhedron, due to the presence of a central atom
(for example, in the terahedral SiCl, or octahedral SFg) or
due to replication (for example, B,Cly is built in such a
way that the boron atoms form an inner tetrahedron, while
the chlorine atoms constitute the outer tetrahedron).

Table 2. Symmetry and order indices in regular polyhedra and
figures based on them

Polyhedron n Symmetry P QO g¢q= Q Examples
" of molecules
(ions)
Tetrahedron 4 T424) 7 0417 0.104 Py, Asy
5 Th24) 7 0533 0.107 CH,, SiCly
8 TA24) 9 0.625 0.078 closo-B4Cly
Octahedron 6 O,(48) 7 0617 0103 —
7 On48) 7 0.667 0.095 SFg, PClg™
12 0,(48) 8 0.778 0.065 closo-[BgHg}2™
Cube 8§ 0448) 7 0708 0.089 Cubane CgHy
(C-framework)
16  0,(48) 0.833 0.052 Cubane CgHyg
{cosahedron 12 [,(120) 0.805 0.067 By,H 2~
(B-framework)
Dodeca- 20 [,(120) 7 0.883 0.044 Dodecahed-
hedron rane
(C-framework)
40 7,(120) 8 0933 0.023 Dodecahed-
rane CyoHzo
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Fig. 2. Dependence of the order index on symmetry (M) and
on the number of atoms (numerals near the points) in mol-
ecules reflected by regular polyhedra and figures based on
them (/) and by regular polygons with the D,, sy~metry (2).

In this case, unlike regular polygons, the order index is
a function of both symmetry and the number of atoms in
the mole~ule (see Table 2). For example, in tetrahedral
molecules with the T, symmetry and M = 24, the Q value
increases from 0.417 to 0.625 as n increases from 4 to 8.

To make this more clear, we present the data of.

Table 2 as a plot, which is shown in Fig. 2. It can be
seen that when n > 4 and M > 24, the order index Q is
much more sensitive to an increase in the number of
atoms in a molecule (especially at small #) than to an
increase in symmetry. For comparison, Fig. 2 also pre-
sents the Q = f{lM(n)] dependence for regular polygons.

Semiregular polyhedral molecules

Faces of semiregular polyhedra are regular polygons
of various types. Numerous types of these polyhedra
exist, viz., prisms and antiprisms, pyramids and bipyra-
mids (examples are presented in Table 3). One should
bear in mind that the coordination polyhedron of a real
molecule can deviate somewhat from the prototype
polyhedron; for example, faces in the polyhedron formed
by the NH3; molecule are isosceles rather than equilat-
eral triangles.

It can be seen from Table 3 that the main regulari-
ties are similar to those observed in the previous case,
ie., O = fIM, n)and Qincreases as M and n increase. A
natural distinction is that, at the same n, the symmetry
(common position multiplicity) and the order index are
lower for molecules corresponding to semiregular poly-
hedra than for those represented by regular polyhedra
(c¢f. Tables 2 and 3).

Irregular polyhedra

Irregular polyhedra are classed as either asymmetri-
cal (pussessing no symmetry) polyhedra, for which the

Table 3. Order indices in semiregular polyhedral figures

Polyhedron n Symmeury P Q q-—-—Q— Examples
" of molecules
(ions)
Trigonal 4 C(6) 8 0333 0083 NH,
pyramid 5 Ci(6) 9 0400 0.080 POF,
Tetragonal  § Ce(8) 8 0467 0.093 closo-[BsHs|™
pyramid (B-frame-
work)
10 Cy(8) 11 0633 0.063 closo-[BsHs|™
Trigonal 5 Dy (8) 8 0467 0.093 —
bipyramid
Trigonal 6  Dy(12) 8 0445 0.074 PF;
bipyramid
with the
central
atom
Pentagonal 14 Dsp(20) 10 0.762 0.054 closo-[B;H4}2~
bipyramid
Square 10 Dy(16) 9 0.700 0.070 [Re,Clg)2™
prism
Prism 18 Dy(12) 12 0.778 0.043 [RegCly,)~
20 Dyy(8) 15 0.750 0.038 [TcgClyyl™

symmetry of the C; point group corresponds to the
common position multiplicity M = 1, or dissymmetrical
polyhedra, which often posses low symmetry. The asym-
metrical figures and many of the dissymmetrical figures
are chiral, ie., their limit figures are a rotating cylinder
with /2 symmetry and a rotating cone with o symme-
try. Numerous groups of the type C, (n = 1, 2, 3, 4,
5.0, D, (n=1,2,3,5.), and O are chiral.

Intuition suggests that asymmetrical figures with C,
symmetry should have Q = 0. However, this statement
is true only for simplest figures, formed by four of five
atoms arranged arbitrarily (Table 4). Examples are also
provided by some triatomic molecules (NOF, O3) that
have C{(1) symmetry and Q = 0, due to lone electron
pairs regarded as pseudo-atoms. When the number of
atoms increases, identical interatomic distances or iden-
tical atoms usually arise; an example is provided by the
C,H4FCI molecule (see Table 4) in which Q > 0 due to
the fact that P < 3n. This result demonstrates once again
that in terms of the model considered, there is no
unambiguous relationship between symmetry and order.
In the present case, order ((J) is a broader concept
incorporating all the features of the spatial arrangement
of points (atoms), including those, not reflected by
symmetry.

Figures with higher symmetries (C, and D,) with n >
2 are characterized by greater Q values. For example, for
the S,Cl, molecule (C, symmetry), @ = 0.250, whereas
for trimethylbenzene (C; symmetry), the value Q =
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Table 4. Asymmetrical and dissymmetrical figures

Figure* Dimensio- Symmetry P Q@ g= e Molecule
nality n

g 3D C(l) 12 0000 0000 —

jg‘i 3D C(1) 15 0000 0.000 CHFCIBr
% ‘4? D C(1) 21 0125 0016 C,HFCI
fj 2D C2) 9 0250 0063 S,Cly
H—C

\©\ D 35 C,3) 14 0867 0025 CHPhy

* Equal distances between the points of the figures are marked by dashes.

0.867 is commensurable with those observed for regular
polyhedral molecules (see Fig. 2).

Thus, asymmetrical figures (C;) can possess certain
degrees of order (Q > 0), and in the case of polyatomic
chiral dissymmetrical figures, the order index may be
fairly high. This nontrivial result provides the possibility
of dividing asymmetrical figures (molecules) into disor-
dered asymmetrical figures (C;, ¢ = 0) and ordered
asymmetrical figures (C,, Q > 0), and dissymmetrical
molecules can thus be classified not only in terms of
their symmetries but also according to the degree of

order realized in the arrangement of their points (at-
oms).

Order in isomers

According to the classification of isomerism (see, for
example, Ref. 27), the most pronounced structural
changes occur in the case of constitutional isomers, in
which not only interatomic distances but also the mu-
tual arrangement of chemical bonds vary. Let us con-
sider, for example, the isomers of S,F,.

F\
s=s
F

F—S—S—F

C,(4), P=9,Q=0.250 D (=), P=17,Q = 0417

As should be expected, the index of order is greater for
the isomer characterized by the higher symmetry.

The structural differences between geometrical iso-
mers, for example, between cis- and frans-
1,2-dichloroethylene are less pronounced.

cy, ol cL K
c= c=C
W H oo e
cis trans

C,[4), P=11,Q = 0.389 C,pyl4), P=11,Q = 0.389

These molecules are characterized by equal order
indices and equal common position multiplicities, al-
though the symmetry point groups are dissimilar. The
invariability of the Q value means that in the present
case, the index of order reflects the number of symmetry
operations rather than the symmetry itself.

Geometrical isomers can exist as individual forms
(they can be physically separated), since the barrier to
the internal rearrangement is relatively high. In the case
where this barrier is low, we deal with the conforma-
tional isomerism. For example, on passing from dichlo-
roethylene incorporating a C=C double bond to dichlo-
roethane with a C—C single bond, the possibility of
rotation around the C—C axis appears. Consider the
Newman projections.

The most symmetrical staggered configuration of the
molecule with the Gy, symmetry, for which @ = 0.500,
is presented at the left. The lowest C; symmetry and
Q = 0.416 correspond to an arbitrary arrangement of
atoms during rotation, ie., the order substantially de-
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cl H
H H H H
< P
S 'y
cl cl

Copn(4), P= 12, Q@ = 0.500 Ci1),P=14,Q=04n1

creases during rotation. Thus, the appearance of the new
(rotational) degree of freedom leads to a decrease in the
order, similar to what we have observed previously upon
the addition of structural degrees of freedom in chain
molecules (see Fig. 1).

Order in nonrigid molecules

The above example of internal rotation with a low
energy barrier, when the isomers cannot be physically
separated, indicates that the method that we suggest
makes it possible to describe dynamic structures. Below
we analyze some types of nonrigid molecules, in which
inversions, librations, and permutations can occur along
with rotation.

Inversions. Let us consider the simplest tetraatomic
molecule with the C;, symmetry like NHy as an ex-

ample. The base of this molecule is a regular triangle

consisting of atoms 1, 2, and 3 (A).

C,,(6)

B: libration

A: inversion

During the inversion, the pyramid formed by atoms [, 2,
3, and 4 turns inside out like an umbrella; as this takes
place, atom 4 occupies position 4° and, in the general
case, it moves along the line connecting points 4 and 4’
and atoms 1, 2, and 3 remain at their positions (are
fixed). For the initial position, P = 8 and Q = 0.333.
When atom 4 moves, its momentary fixation requires
one independent coordinate; therefore, P and the index
of order are retained. However, the above consideration
is simplified, since atoms 1, 2, 3 move apart fully
symmetrically as atom 4 passes through the base of the
pyramid, and the 1—2, 2—3, and 1—3 distances in-

crease, although the regular triangle forming the base of
the pyramid retains its Dy, symmetry. Thus, during the
inversion, coordinates of all of the atoms vary, and the
order index should decrease. If the inversion occurs in a
gas or in a liquid, the decrease in the Q value is not too
pronounced, i.e., the simplified description is also suit-
able. However, if a nonrigid molecule undergoes an
inversion in a solid, the symmetry substantially de-
creases due to the effect of the environment. As a
consequence, the order index decreases considerably,
perhaps down to ¢ = 0.

Librations. Let us consider librations (oscillations of
atoms accompanied by the deviation of one of them
from the plane) in relation to a planar tetraatomic
molecule with Dj; symmetry (B). Atoms 1, 2, and 3
retain their positions, whereas atom 4 executes inversion
oscillations. The Dy, symmetry is not retained, since a
C;, pyramid arises, and one more independent coordi-
nate is now needed for the momentary fixation of the
position of atom 4. In this case, 0 = 1 — 8/(3-4) =
0.333, which is lower than the initial Q = 0.417.

Permutation isomerism. Let us consider the permuta-
tion isomerism using the Berry rearrangement in the
PFs molecule as an example; the two extreme positions
are characterized by D,;, symmetry (P = 8, Q = 0.556)
and by Cy, symmetry (P = 8, @ = 0.556). If a polyhe-
dron incorporates a regular polygon in the equatorial
plane, which coincides with the plane of the mirror
image m, the common position multiplicity increases as
the number of vertices increases. Conversely, for all
regular polygons, irrespective of the number of vertices,
the number of independent parameters Pis 7.

D,,(12)

The transition from one state to another does not
lead to a variation of the order, but the order in the
intermediate states (in instantaneous pictures) is lower.

In fact, if we assume that only the phosphorus atom
retains its position, whereas all the five fluorine atoms
move, and that three coordinates are required to de-
scribe momentary positions of each of them, then P =
3.S=15and Q=1 — 15/(3:6) = 0.167. If the
phosphorus atom also changes its position, then P =
36 = 3nand Q = 0.

However, one should take into account that the
symmetry is determined by more than just the the
common position multiplicity M. For example, in the
scheme presented above, the Cy(8) state is more sym-
metrical from the crystallographic standpoint than the
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Dy,(12) state, since the former possesses a fourfold axis.

Thus, the index of order Q is very sensitive to the
static and dynamic isomerism, and correlates well with
the symmetry: Q decreases as the symmetry decreases;
however, the order remains unchanged if the common
position multiplicity does not vary. The appearance of
new sorts of motion in nonrigid molecules (librations,
inversions, and permutations) is accompanied by a de-
crease in the symmetry and by a decrease in the order
index.

Results and Discussion

1. Order and symmetry. Since, as shown above, in
the general case, order varies as a function of both
symmetry and the number of atoms in a molecule, it
would be appropriate to consider the dependences of Q
on each of these parameters separately, with the other
parameter remaining constant. Now we discuss the de-
pendence of Q on M at n = const for the simplest tri-,
tetra-, and pentaatomic figures.

In triatomic molecules, points (atoms) can be ar-
ranged either as a triangle (irregular, isosceles, or equi-
lateral) or on a line (with equal of different arms).

VA A ces oo

Sym-  C(l) (G(4) Dy(12) Coop(®)  Dpp(0)
metry

P 9 8 7 7 6

Q 0 0.111 0.222 0.222 0.333

The limiting value limQ(M-»») is equal to 0.333.
The data presented above indicate that there exist fig-
ures with different types of symmetry [ Dy,(12) or C ()]
but identical order indices Q. Let us call these figures
isoorders.

Let us consider a tetrahedral molecule with central
atom A in which the initially identical ligands are suc-
cessively replaced as an example of pentaatomic mole-

cules.
X B B B
A A A A
X X X X X C X (e}
X X X D
Sym-  TA24) C3,(6) Cov®) Ci(h)
metry
P 7 9 11 IS5
Q 0.533 0.400 0.267 0

The index of order regularly increases in the C,—»7},
series with an increase in the common position multi-
plicity, and reaches the limiting value ¢ = 0.533 in the
case of a regular tetrahedron. These results can also
serve as an illustration of the effect of chemical compo-
sition on the Q and P/3n values.

In the case of tetraatomic molecules, 74 figures can
be distinguished. We shall consider only the eleven most
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Fig. 3. Dependence of the order index on symmetry for
tetraatomic molecules reflected by 2D-polygons (/) and

3D-polyhedra (2). The horizontal line corresponds to an
| D-structure at M—.

typical forms (Table 5, Fig. 3). Among them, molecules
with different types of symmetry but identical order
indices can be found; for example Q = 0.417 (the
limiting value for all dimensionalities) for Dy, Dy, Dap,
and T, Thus, the isoorders, which we discovered above
as an individual case of triatomic molecules, can also be
found in more complex molecules.

In the case of isoorders, the index of order is insensi-
tive to variations in the molecular symmetry. The oppo-
site case, i.e., the case where figures with identical types
of symmetry possess different order indices (we shall call
them isosymmetrics), is equally interesting. In the exam-
ple under consideration, this is a polyhedron with Cy(2)
symmetry and Q = 0.167 and a polygon with C(2)
symmetry and @ = 0.083. This implies that in some
cases, Q can be more sensitive to the molecular struc-
ture than the symmetry (the common position multi-
plicity).

2. Order and the number of atoms in the molecule.
The dependences of Q on n have aiready been discussed
in the consideration of chain molecules and molecules
having shapes of regular polygons and polyhedra. The
symmetry of the chain molecules in the noncrystailine
state, i.e., in the presence of structural degrees of free-
dom, corresponds to the C; point group, and the Q
value regularly increases as the number of atoms n
increases tending to the limiting values limQ = 1.000
(no SDF), limQ = 0.667 (one SDF), or limQ = 0.333
(two SDF) (see Fig. 1).

Figure 4 presents the plot of Q against n at a constant
symmetry. It can be seen that for figures (molecules)
based on regular polyhedra, the Q = f{n) dependence is
essentially the same and varies only slightly upon going
from one symmetry point group to another (T4, O, Iy).
The situation also does not virtually change when we
consider irregular polyhedral molecules, for example,
those with the C;,(6) symmetry.
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Table §. Order index and symmetry in planar (2D) and three-
dimensional (3D) tetraatomic molecules

Figure®* Dimensio- Symmetry P Q g= %
nality

Q 3D i 12 0.0 0
:Z:; 2D C(2) 11 0.083  0.021
d{’_‘/éj }D G () 10 0.167  0.042
o"‘LS; 2D G (¥ 9 0.250  0.063
@ D Gy (4) 9 0250  0.063
% 3D C3,(6) 8 0.333  0.083
{} 2D Dy(8) 8 0.333  0.083
o’j"w 2D Dy(12) 7 0417 0.104
‘E:} 2D Dy(l6) 7 0417  0.104
% 3D 7424) 7 0417  0.104
o+0—0+0 D D= 7 0.417  0.104

* Equal distances between the points of the figures are marked
by dashes.

g
Cl='--~/--\Cl
o) N\ 090

N I N SIS

VAN P Al N
H-A N\ 0 l
\‘\H'lH Fé' v H/ \.H AN
SSF A 00
n(P) 48) 59) 8(11) 12(12)
0 0.333 0.400 0.542 0.667
q 0.083 0.080 0.068 0.056

It can be clearly seen from Fig. 4 that the Q value
increases as the symmetry increases, while the number

i L 1 i A i

0 10 30 50 n

Fig. 4. Dependence of the order index on the number of
atoms in a molecule for regular polyhedra and figures based on
them with the symmetry 7, (1), Oy (2), and [, (3), and also for
irregular polyhedra with the Cj3, symmetry (4).

0 5 8§ 12 20 40 60 n

T 7T 17 TrT T T T T

lim Q /,,/
08} 4,,—7;( 120)
0.6} S On(48)

041
021"
0 1 1 $
0.5 1.0 1.5 logn

Fig. 5. Limiting order indices and symmetry as a function of
the number of atoms in a molecule.

of atoms #n is constant. The highest symmetry and the
limiting index of order limQ corresponding to it can be
found for each n. For example, the types of symmetry
realized for n = |2 range from Cy,(6) with Q = 0.667 to
1,(120) with Qy;,, = 0.805. The results of this analysis
carried out for some n values located in the range from 3
to 60 are presented in Fig. 5. It can be seen that in
polyatomic nonchain molecules with n > 20, the order
indices are high (Q 2 0.9). As » increases the order
asymptotically approaches 1.0. The order indices for
polyatomic clusters (for example, for fullerenes with n 2
60) are very high, although they are still lower than the
values observed in crystals (Q ~ 1.0) possessing typical
long-range order.

3. Order and lone electron pairs. The stereochemical
role of lone electron pairs is well known. The Gillespie
model of repulsion?? in its current formulation?” makes
it possible to describe a great number of molecular
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structures. We shall consider the variation of the struc-
ture of molecule AX; during the successive substitution
of ligands X by lone electron pairs (E) within the
framework of these views.

Type AXS AX4E AX3E2 AX2E3
F F F
- 1 F LA
S - { @
Example FE:—i!-" ! orp F—Cl Xe
P TN N o ©ro
F F F
Sym-  Dy(12) Cn(4) C1(4) D p(=)
metry
P 8 9 8 6
Q 0.556 0.400 0.333 0.333

The molecules are shown schematically without pre-
cise geometrical relations between the bond lengths and
the angles between bonds. Actually, the following varia-
tions of the structure of the molecule occur.

The initial structure AXs is an ideal trigonal bipyra-
mid. When one of the F atoms is replaced by E, the
axial bonds become longer than equatorial bonds, and
the angles deviate from their ideal magnitudes. For
example, the length of the axial bond in SF, is 1.65 A,
the equatorial bond length is 1.55 A, and the axial and
equatorial angles are 173° and 102°, respectively.25 The
symmetry decreases from Dy;(12) to C;,(4).

The further substitution AX4E—AX;E, does not lead
to a change in the symmetry, but the order index Q
decreases. The lone electron pair E affects the Q value
in two ways. First, as the number of E increases, the n
value formally decreases, and, consequently, all other
factors being equal, @ decreases. Second, the appear-
ance of E can cause a decrease in the symmetry (the
common position multiplicity) of the atomic group and
a further decrease in the Q value or, conversely, an
increase in the symmetry and in Q. In the example
given, the Q value was affected by the first factor,
because the symmetry did not change.

Further substitution AX;E,—AX;,E; leads to a highly
symmetrical figure with an infinity-fold axis of symme-
try. The increase in the symmetry results in an increase
in Q, despite the fact that one more atom was lost. Note
that in this series, we once again come across isosym-
metrics (AX4E and AX3E;), which arise due to the effect
of the lone electron pair on the order in the molecule.

4. Scale of order. Thus, for each molecule in which
the spatial arrangement of atoms is known, one can
determine not only the symmetry (the point group and
the common position multiplicity) but also the index of
order (. We have considered numerous examples in
which Q varied from 0 to 1.0, i.e., molecules occupied
the whole scale of the order indices.

As shown above, symmetry and order supplement
each other. Two special cases should be distinguished:
isoorders, i.e., degenerate molecules possessing identical
order indices but different types of symmetry (for exam-
ple, XeF, and NH; with Q0 = 0.333), and isosymmetrics,
i.e., molecules with identical types of symmetry but

different order indices (for example, NH; and W;0q
with the Cj, point group).

Molecules in which both the order and the symmetry
are identical can be classified as structurally identical or
structurally similar molecules. Molecules of the former
group incorporate equal numbers of atoms (for example,
O; and FNO molecules, see Table 4, g = 0, (|, and
n = 3), while in the latter case, the numbers of atoms
are dissimilar (for example, O3 and C;H,CIF, n = 3 and
n = 8, respectively).

Thus, the introduction of the new structural charac-
teristic, the index of order Q, provides the basis for a
new classification of molecules and permits comparison
of structural features of various classes of chemical
compounds within a unified scale.

5. Geometrical information index. We regarded the
Q value in Eq. (2) as an index characterizing the order
in the arrangement of atoms in a molecule, while the
term P/3n was correspondingly regarded as an index
characterizing disorder. In the present section we ana-
lyze the geometrical meaning (and, to some extent, the
physical meaning) of Eq. (2) and of the parameters
incorporated in it and demonstrate that the term P/3n
corresponds to the entropy of information, and there-
fore, it can be regarded as a geometrical information
index, and the term @ corresponds to negentropy or
excess information.

It was shown above that Q (or 1 — Q) is the function
of several parameters

Q = AM, n, D, SDF),

where M is the symmetry point group of the molecule
expressed in terms of the common position multiplicity,
SDF is the number of structural degrees of freedom, »n is
the number of atoms, which reflects the complexity of
the molecule (whether it is a simple di- or triatomic
molecule or a complex molecule), and D is the dimen-
sionality of the molecule, which serves as a measure of
its physical inhomogeneity, since the dimensionality is
related to the anisotropy of the molecule. Anisotropy is
especially significant for 1D (chain) and 2D (layered)
molecules. The dimensionality plays a very important
role in the theory of spatial order and disorder when it is
applied to the formation of crystals of polymers; this was
reflected in the relevant rules, for example, the rule that
the spontaneous crystal order cannot exist in 1D- and
2 D-systems.3

Let us analyze the independent variables of the 0 =
AM, n, D, SDF) function from the viewpoint of the
information theory. According to the definition given by
Ashbey,3? information is a measure of the diversity in
the system, and according to the Glushkov definition,3!
it is a measure of inhomogeneity and nonuniformity of
the system. We shall consider the independent variables
of the function in terms of these definitions.

In the framework of the approach under considera-
tion, symmetry can be considered to be a measure of
structural diversity or structural inhomogeneity, since
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symmetry operations (symmetry axes and planes and
inversion center) make it possible to divide the set of
atoms constituting a molecule into automorphic groups
(AMG). We shall make it clear using the CH,F; mol-
ecule with the C,, symmetry as an example. This mol-
ecule contains three AMG, two of which, [H(1) and
H(2)] and [F(1) and F(2)], are connected by a twofold
axis, while the third (the C atom) is located on this axis.
In this case, the AMG are distributed over symmetry as
{2,2,1}. Pay attention to the fact that the atoms in the
groups are identical (homoatomic), whereas the groups
themselves are heteroatomic. Thus, symmetry reflects
the structural nonuniformity and indirectly reflects the
chemical diversity in the molecule.

Our analysis indicates that the Q (or 1 — Q) value
characterizes a molecule fairly comprehensively and
qualitatively corresponds to the definition of informa-
tion as a measure of diversity, nonuniformity, and
inhomogeneity. In order to verify this tentative infer-
ence, we shall consider the relationship between the
parameter P/3n, which in the present case characterizes
disorder, and the information symmetry index [, in-
troduced by Bonchev (see Refs. 13—16); we chose this
index among the other information indices because it is
best suited for our geometrical approach. The index [y,
is calculated taking into account the distribution of
atoms equivalent in symmetry, i.e., atoms that exchange
places upon symmetry operations. Each symmetry op-
eration involves a particular number of atoms in a
molecule as well as particular groups of atoms, viz.,
AMG.

Let us consider the foregoing in relation to the
[PtCl4]* ion with the Dy, symmetry. It has a fourfold
axis, which makes it possible to distinguish an AMG
[CHCI(Z)CI3)CI(4)] consisting of atoms joined by the
fourfold axis, and an atom (Pt), through which this axis
passes; thus, the five atoms are characterized by the
{4,1} symmetry distribution. The Py value for an
averaged atom is calculated from formula (1); for the
ion considered, it is equal to

Iﬂ

4 4 1 1 . -
om ="z logy 5= zlogy 3 = 0722 (bit at.”h),

5

and for the whole molecule, /&, =0.722-5 = 3.611 (bit
molec.™!). Note that the lym values characterizing the
CH, and SiCly; molecules are the same, although the
T.{24) symmetry of these molecules differs from Dy (16);
in other words, in some cases, [, is insensitive to its
main criterion and is degenerate. An analysis carried out
previously!3—16 showed that, in addition to the symmetry
of the whole molecule, the types of symmetry of separate
groups of atoms, for example, of NH, groups, erc., should
also be involved in the calculation (see below).

To elucidate the relations between P/3n and I, we
shall first consider molecules consisting of n = § or
8 atoms (Table 6). Since the limiting magnitude of
P/3n is 1, in order to ensure better comparison of the
values of P/3n and I§,,, the symmetry index should also

Table 6. Information symmetry index and the P/3n value in
series of penta- and octaatomic molecules

Mole- Sym- P AMG I§n® P/3n I;‘;m
cule metry /bit - mole- nlog,n
cule™!
Pentaatomic molecules
[PICI)?™  Dg(16) 7 (1,4 3611 0.467 0.311
CHy TL24) 7 (1,4} 3611 0467 0311
MeCl C3,(6) 8 (1,3,1} 6.857 0.533 0.591
CH,F, Cy4) 10 {1,2,2} 7.611 0.667 0.656
CH,FBr  C(2) 12 {1,1,1,2} 9.611 0.800 0.828
CHFCIBr Ci(1) 15 {1,1,1,1,1} [1.611 1.000 1.000
Octaatomic molecules

Cube? 0,(48) 7 (8} 0 0.292 0

C,Hg¢ Dy (12) 9 {6,2} 6.488 0.375 0.270
C,yHg Dy (12) 9 (6,2} 6.488 0375 0.270
Al;Brg Dy(8) 10 {2,4,2} 12.00 0417 0.500
CyH;Cl; G(3) 12 {3,3,2} 12.49 0.500 0.520
(CH,C; G2 15 {2,2,2,2} 16.00 0.625 0.667
(CHFCl), C{2) 16 {2,2,2,2} 16.00 0.667 0.667
EtCl C(1y 20 {1,1,1,1,1,1,1,1} 24.00 0.833 1.000
EtCl C(1y 20 {3,1,1,1,1,1)¢  20.80 0.833 0.870

@ Taken from the literature.!3 & The figure is presented for
comparison. ¢ With allowance for the local symmetry of the
Me group (all the other distributions were obtained neglecting
the local symmetry).

be presented in a normalized form. For this purpose, we
divide the symmetry index by the factor nlog,n. The
physical meaning of this factor is the maximum infor-
mation that can be carried by an asymmetrical (com-
pletely chaotic) molecule: I, = 11.610 for n = 5,
Igm = 24.00 for n = 8, efc. The I, values normalized
in this way are listed in Table 6. The correlation be-

tween P/3n and I3, is shown as a plot in Fig. 6.

P/3n
1.0 0
,///
08| e .//-
v v
'i’/ s
s
0.6 7
7
e
o)
041 ~9 (//7/ ) o1
- - / [ 2
L~
/
0.2}k yd
O / L i i 1
0 0.2 0.4 0.6 13,/nlogyn

Fig. 6. Correlation of the P/3n parameters and of the normal-
ized symmetry indices in the case of penta- (/) and octaatomic
molecules (2) of various types of symmetry.
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Table 7. Information symmetry index and the P/3n value in molecules with the identical

C,, symmetry
n Molecule Dimensio- P P/3n AMG 1ym® logyn Iym
nality /it at.”! log,n
3 H/O\H 2D 8 0.889 (1,2} 0.92 1.59 0.58
)
4 F’Br\F 2D 9 0750 (2,2} 1.00 2.01 0.50
Hzc\g/cH2
8 i 2D 12 050 {2,6) 0.81 301 027
(0]
H,C—CH,
9 PN 3ID 12 0444 {1,2,6)0 1.2 318 038
(o) 6]
Cl
H H
12 H H 2D 10 0.278 (4,8} 0.72 3.60 0.20
H

e With allowance for local symmetry (see the Text).

Now we compare molecules with identical types of
symmetry but different numbers of atoms. The relevant
data for molecules whose symmetry corresponds to the
C,, point group are given in Table 7 and in Fig. 7. In
this case, we not only normalized the /g, value but also
calculated /4, taking into account the local symmetries
of separate groups of atoms incorporated in the mole-
cule.13-16 The local symmetry can differ substantially
from the symmetry point group of the whole molecule.
For example, a molecule with C| symmetry can contain
CH;, NH,, and other groups, whose symmetry is higher
than that of the molecule itself. For example, the sym-
metry of the CH; group is C4,. The octaatomic molecule
C,HCl (see Table 6) has C; symmetry, and, with aliow-
ance for the local C3, symmetry of the CHj group, its
distribution over symmetry is {3,1,1,1,1,1} instead of
{1,1,1,1,1,1,1,1}, which would be the case if the local
symmetry were not taken into account. The values calcu-
lated taking and not taking into account the local sym-
metry are markedly different. For example, if we neglect
the local symmetry, molecules with C| symmetry will be
characterized by different /3, values; however, the
normalized /3,,/nlog,n values will be identical, irre-
spective of the number n (¢f CHFCIBr and C,H;CI
molecules in Table 6). Thus, the /3, values normalized
by log,n but not taking into account the local symmetry
are insensitive to variations of n. When the local symme-
try is involved in the consideration, the degeneracy is
removed, and the normalized /3,/logyn value becomes
a monotonic function of n, if we ignore the 3D figure

with n = 9 (see Table 7 and Fig. 7). Note that the /3,
index for figures of regular shapes is equal to zero (is
degenerate). In these figures, all the vertices (atoms) are
identical; hence, /3, = log(n/n) = 0. An example of
such a figure is provided by a cube (see Table 6, Fig. 6).
Unlike /&, the P/3n value is nondegenerate with re-
spect to regular figures.

P/3n
1.0

0.6

12/
/ /
/

/

/

/- L ; i

0 0.2 0.4 0.6 13,/1ogan

Fig. 7. Correlation of the P/3n parameters and of the normal-
ized symmetry indices (/3 with allowance for the lo<':al
symmetry) for molecules with the C;, symmetry and with
various numbers of atoms n (numerals near the points).
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0
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Analysis of the data presented in Tables 6 and 7 and
in Figs. 6 and 7 indicates that the P/3n and I3,,/nlogyn
values are not identical (as should be expected) but are
correlated. Therefore, P/3n may be regarded as a special
information index, namely, geometrical molecular infor-
mation index

P

Igcom = ; .

The analogy of this value with the symmetry index
Iyym is due to the fact that both indices take into account
the symmetry of the molecule: [, does it by virtue of
the corresponding AMG, and P/3n is based on the geo-
metrical consideration of a particular figure/molecule.
They differ not only in the way in which the symmetry is
taken into account but also in the method of calculation,
which is probabilistic (according to the Shannon formula)
in the case of /., and nonprobabilistic (based on analyti-
cal geometry) in the case of P/3n. The [, index
supplements the information indices known previ-
ously!™1? and can be used to elucidate the composi-
tion—structure—property relationships, for example, to
evaluate entropy, enthalpy, and reactivity, to predict the
propertic of molecules, to ac->mplish target-directed
syntheses of molecules with specified properties,
and to carry out systemnatization for computerization of
studies, efc.

Note that a numerical correlation involving /g, can

be obtained only if this index is normalized by nlogyn,
whereas the index [y, is actually normalized by 3n.
This means that [y, refers to the information space,
whereas /geqn, refers to the three-dimentional space of
Cartesian coordinates. Thus information content can be
established in the three-dimensional space by using the
set of independent coordinates (P) needed to fix a
figure/molecule in this system.

Taking into account the general formula (2), the
index of order Q can be written as follows

Igcou\+ 0=l

Let us analyze the information meaning of this ex-
pression. Suppose that a degree of freedom associated
with the "defrosting” of chains or with isomerism or
librations appears in the molecule. As this takes place,
P/3n increases, and, consequently, @ decreases; the
information content increases as the index of order Q
decreases. Then, while /.., can be correlated with [y,
(see Figs. 6, 7) and, hence, with the Shannon entropy
of information, the order index Q can be correlated with
the Brillouin negentropy3? or with excess information.
The limiting case 0 = | is matched by a regular polygon
with an infinite number of sides, ie., a circle (see
Table 1) or by an infinite chain with fixed SDF (see
Fig. 1). Real molecules always possess the information
content P/3n, this content being the greater, the closer
to the beginning of the scale of order Q = 0, they are
located.

q Gmax_
0.10} 0
4 1.000
0.08
0.06 |
-+ 0.618
0.04 | 0.500
0.382
0.02F
1 I/ I3 1
4 6 8 n

Fig. 8. Specific order index (/) and order index (2) in regular
polygons. Here and in Figs. 9 and 10, the values 0.618 and
0.382 are marked, which correspond to the harmonic ratio of
"golden cross-section”; arrows show the transition to the corre-
sponding n and q values.

6. Specific order index. Above we introduced the
notion of specific order index ¢ = Q/n and calculated ¢
for various figures (see Tables 1—5). Now we shall
consider the variation of the specific order index as a
function of the number of atoms (n), symmetry, and
dimensionality (1D, 2D, or 3D) of the molecule.

In the simplest case, i.e., in regular polygons (see
Table 1), an increase in n is accompanied by successive
increase in the symmetry: D, = D3,(12), Dy,(16), etc.
As this takes place, as Fig. 8 indicates, the order index
Q regularly increases, while the dependence of the spe-
cific order index ¢(n) passes through a maximum, gp,, =
0.107 at n, = M(gma) = 5. In the case of regular
polyhedra (Fig. 9), no pronounced maximum is ob-
served, but the highest values of ¢ attained in this case
are close to the g,,,, value observed for regular polygons
and are also located in the n = 4—6 region.

In ordered chains, i.e., in chain molecules in which
the first interatomic distance and bond and torsion
angles are fixed, the extremum g, at n,, = 5 and 6 is
also observed (Fig. 10). Following the successive de-
frosting of the structural degrees of freedom, the maxi-
mum value decreases and shifts toward lower 71 (g =
0.067 at n, =5 and q,,, = 0.042 at n,, = 4, Fig. 11,
curves 2 and J3).

In the regular figures considered, the symmetry is
not constant: it is Dy, for polygons and varies from T, to
1, for regular polyhedra. In the case of ordered chains
with fixed interatomic distances and angies, the symme-
try varies from C,, (if the initial triatomic unit is an
isosceles triangle) to the alternation of C,, (when the
number of atoms in the chain is even) and C,, (when
the number of atoms is odd), on the assumption that the
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Fig. 9. Specific order index (/) and order index (2) in regular 0 — L 1
polyhedra. 0 5 10 15 n

chains form 2D-structures. The other case, viz.,, the
study of the relationship between ¢ and n in series of
figures/molecules with identical types of symmetry, is
also of interest. The results of the analysis of such series,
together with the above-considered case of regular fig-
ures and chains, are presented in Table 8.

It can be seen from Table 8 that the presence of

maxima on the g¢(n) dependences at n, = 4, 5, 6 is.

typical of all the groups considered. It is noteworthy that
the @, = (gma) values are located near the middle of
the 0—1 scale of order indices. More precisely, they are
located near or are confined between two numbers,
0.382 and 0.618, corresponding to the harmonic ratio of
the "golden cross-section” (see, for example, Figs. 8§—
10). A similar situation has been observed!® for the
information topological indices of molecular graphs of
heteroorganic compounds.

Now let us consider a fixed number of atoms in
molecules by using, for example, the data of Table 5 for
n = 4. The types of symmetry vary over a wide range,
but 1D-, 2D- and 3 D-structures can be distinguished. It
can be seen from Fig. 12 that for all dimensionalities,
the same maximum limiting value ¢, = 0.104 is at-
tained as the common position multiplicity increases.

Fig. 10. Specific order index (/) and order index (2) in chains
with fixed SDF, interatomic distances, bond angles, and tor-
sion angles.

0.08
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Fig. 11. Variation of the maximum specific order upon varia-
tion of the number of SDF.

The following parameters in the chains are constant: inter-
atomic distances and bond and torsion angles (/); interatomic
distances and bond angles (2); interatomic distances (J).

Table 8. Maximum values of the specific order index (g, on the ¢ = fln) dependences and the
corresponding numbers of atoms n,, = n{qn,y) and order indices @, = Q(gax)

Parameter Regular Chains with Molecules with identical types of symmetry
figures frozen SDF

2D 3D 04(48)  TA24) Dyy(16) Dyy(12) G3(6)  Cpuld)
Tinax 0.107 0.104 0.093 0.103  0.107 0.104 0.104 0.080 0.067
- 5 4 and 6 5and 6 6 5 4 4 5 5
O 0.533 0.517 0.512 0617 0533 0417 0417 0400 0.267
I — O 0.467 0.483 0.488 0.383 0467 0.583 0.583 0.600 0.733

On 1.14 1.07 1.05 1.610 1.14 0.72 0.72 0.67 0.36
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Fig. 12. Specific order index in tetraatomic molecules with
various types of symmetry (M is the common position multi-
plicity).

0

For 2D- and 3D-molecules, the g value increases in a
similar way as M increases.

In conclusion, we shall consider the order indices Q,,
corresponding to the maximum values ¢,,,,. Firstly, they
all (except for molecules with the lowest C,, symmetry,

which provide the only exclusion) fall into the limits of.

the golden cross-section ratio near the numbers 0.382
and 0.618. Secondly, a relative Q,/(1 — Q,,) value can
be introduced, whose physical meaning is to indicate the
chaos/order ratio. Two main classes are distinguished:
groups in which order prevails, Q,/(1 — @,)>1 (in
Table 8, these are regular polygons, regular polyhedra,
ordered chains, and molecules with the O, and T, types
of symmetry) and groups in which disorder prevails (in
Table 8, these are all groups with symmetry lower than
Oh and Td)'

Let us consider two important results, associated
with the specific order index and with the number of
atoms n,(qmay): firstly, the specific order index as a
function of the number of atoms in a molecule normally
passes through a maximum at n, = 4—6, ie., on the
scale of the first coordination sphere; secondly, as the
number of varying structural degrees of freedom in
polymeric molecules (interatomic distance, bond angle,
torsion angle) increases, gn., decreases and nm shifts
toward lower values.

Let us compare these results with the nonstrict crys-
tal-chemical conclusions made from the strict localiza-
tion theorem reported by Delone er al.33 for a regular
system of Delone.34 Based on this simplified interpreta-
tion of the localization theorem, it may be claimed that
long-range order is a consequence of short-range or-
der.3 If all atoms in a three-dimensional (3 D) space are
regularly surrounded within the limits of 3—4 coordina-
tion spheres, long-range order, ie., an ideal crystal
arises.5 In the case of 2D space, the Shtorgin theorem
states that a regular environment within two coordina-

tion spheres is needed.3® When the radius of the identi-
cal environment decreases, ideal crystal is not formed;
instead, there occurs twinning, formation of various
polymorphic modifications, erc.

Based on the foregoing, it may be concluded that if
the radius of the identical environment decreases to the
first coordination sphere, either separate molecules are
formed rather than condensed polymeric materials (i.e.,
long-range order does not arise either because the size of
the regular environment in the molecule is too small) or
long-range order is absent because a condensed noncrys-
talline state with a short-range order is formed. The
latter can be clearly seen in the case of polymeric | D
molecules: as Q,, = Hgmax) and g decrease and the
number of SDF increases, the nm(g,,,) number of
atoms decreases in the series 6->5-»4 (see Fig. 11).

Thus, molecules and noncrystalline substances can
be defined as systems in which the regular environment
of atoms is observed at distances not exceeding the size
of the first coordination sphere of short-range order. If
the regular environment is disturbed even in the first
coordination sphere, only noncrystalline substances can
be formed.

® ¥ %K

We developed a geometrical approach to the descrip-
tion of the order/disorder in various molecular systems
and found certain regularities in the variation of the
order index Q as a function of the number of atoms in a
molecule, its symmetry, the number of structural de-
grees of freedom, and dimensionality. It follows from
the main equation Q = | — P/3n that P/3n can be
regarded as a relative index of disorder in the system,
while from the viewpoint of the theory of information,
the P/3n parameter (P is the number of independent
variables needed to fix a molecule consisting of n atoms
in the Cartesian system of coordinates) correlates with
the Shannon entropy of information and can be inter-
preted as a geometrical information index. The order
index Q correlates with negentropy or excess informa-
tion. Due to the nonprobabilistic method for the evalu-
ation of information used by us (since the Q values were
calculated only in terms of the analytical geometry), the
relationship between the Cartesian three-dimensional
space (normalization of P by 3n) and information space
(the normalizing factor used for [, is nlogyn) can be
established as a correlation between the geometrical and
symmetry information indices. Therefore, our study can
be related not only to the structural chemistry of mole-
cules but also to the branch of mathematical chemistry
that is based on the theory of information.

The potential of the approach used by us is by no
means exhausted within the framework of this study in
which the following items were simplified or were not
considered at all. First of all, this method for the
calculation of the order index in this particular form is
applicable only to rigid structures, whose symmetry does
not vary. Nevertheless, we managed to use it for the
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analysis of nonrigid molecules having degrees of free-
dom like inversions and librations. The development of
this method toward its application to dynamic structures
seems fairly interesting.

We also simplified a fortiori a practically important
problem, i.e., the composition—structure—property cor-
relation. Despite the fact that this problem is intuitively
clear and seemingly simple, it is quite complex and, in
general, has not been solved. In this connection, it is
pertinent to mention, for example, the permanent dis-
cussion dealing with the fundamental impossibility of
unambiguously predicting structure from data on the
chemical composition.

We did not consider the special case of quasi-crystals
as an example of icosahedral systems with long-range
orientation order in the absence of translational symme-
try. Complex systems with a chaotic arrangement of
molecules or systems with oriented molecules like liquid
crystals also were not analyzed.

[t should be noted that the common classification
into organic chemistry, in which molecules predomi-
nate, and inorganic chemistry, in which complex frame-
work solid substances and compounds predominate, is
fairly arbitrary, although it reflects largely the specific
character of these fields of chemistry. This division is
removed if we proceed to the consideration of meso-

molecules and supramolecules (dendrites, cascade sys-

tems, molecular tectonics, efc.) in organic and inorganic
systems in which the covalent bond is no longer signifi-
cant; in this case, the levels of the arising problems and
the ways for tackling them are similar.36.37 The descrip-
tion of supra- and mesomolecules should be associated
with the use of the theory of information.3” Therefore,
we hope that the use of the method that we propose for
the evaluation of order/disorder in molecular systems
would permit a fresh glance at some problems relating to
timely branches of modern science.
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