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Structural features of various molecular systems with symmetry of point groups ranging 
from C 1 to the icosahedral symmetry are analyzed in the framework of the model suggested 
previously for the evaluation of order and disorder in the arrangement of atoms in a molecule 
based on the equation Q = 1 - P/3n (where Q is the index of order, and P is the number of 
independent coordinates needed to fix an n-atomic molecule in the Cartesian coordinate 
system). The Q value depends on various structural parameters of the molecule: the number 
of atoms in it, the symmetry, the dimensionality, and the number of structural degrees of 
freedom. The disorder index P/3n = 1 - Q correlates with Shannon's entropy of informa- 
tion, and Q correlates with negentropy or excess information; this makes it possible to use 
P/3n as a new geometrical information molecular index that is obtained by a non- 
probabilistic method. Analysis of the relationship between order and chaos in molecular 
systems, as well as of the specific order index q = Q/n, makes it possible to identify both 
general and specific features of molecules. 
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Introduction 

The problem of  chaos and order  and their  relat ion- 
ship in par t icular  systems occupies  one of  prominent  
places in the structure of  scientif ic knowledge• It is 
tackled not only in such branches of  science as chemis-  
try, physics,  and cybernetics ,  t - 5  but even in medicine,  
psychology,  economics ,  sociology,  etc• In these cases, 
absolutely different objects are considered,  and order  is 
general ly  taken to mean correla t ions  in space and t ime. 
In the present  paper  we analyze the  problem of  the 
structural  (geometr ical )  order  in molecules .  

The concept  of  structural o rde r /d i so rde r  is t radi t ion-  
ally related to the presence of  so-ca l led  long-range 

order, i.e., t ranslat ional  invariance typical of  the crystal-  
line state; in this sense, order  corresponds to a crystal 
with long-range order,  and chaos is associated with a 
gas, a l iquid, or a glass. During studies on the s tructure 
of  mat ter ,  it becomes clear  that  no sharp boundary  
between chaos and order  exists, and then the corre-  
sponding assumptions are introduced• For  example ,  it is 
c o m m o n  knowledge that noncrysta l l ine  mater ia ls  are 
character ized by short-range order  de te rmined  by chemi-  
cal bonds within the limits of  1-2 coord ina t ion  spheres 
around an arbitrari ly chosen a tom (see, for example  
Ref. 5). Fur thermore ,  the notion o f  "med ium- range  
order" has been introduced to describe the s i tuat ion in 
noncrystal l ine substances, for example  in glasses and 
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glass-forming liquids. The medium-range order occurs 
at distances of  up to tenths of/mgstrOms. 6 Like the long- 
range order in crystals, the medium-range order is mani- 
fested in the X-ray diffraction pattern of  a sample as so- 
called first sharp diffraction peak, whose nature is being 
actively debated now. 7,s 

Thus the concepts of  disorder (chaos) and order 
appeal first of  all to the kinds of order that can be 
detected experimentally. A. i. Kitaigorodsky 9 proposed 
the following classification of states of order: (1) order 
viz., ideal crystal without defects, (2) chaos, viz., a gas 
without short-range order; (3) disorder in the order (for 
example, defects in crystals); (4) order in the disorder 
(for example, liquid crystals with orienational and short- 
range order but without long-range order or liquids with 
short-range order). Real situations can be represented as 
mixtures of the above states. 

All the foregoing refers to order and chaos in macro- 
scopic systems and not to individual molecules, al- 
though it is clear that molecules can differ not only in 
symmetry but also in the degree of order. No quantita- 
tive evaluation of order and chaos applied to molecules 
(or to systems or media consisting of these molecules) 
existed before the entropy of information was intro- 
duced. The example of four-stage description of order 
and chaos presented above was purely qualitative. 

The problem of introducing a universal numerical 
characteristic of  a structure, which would characterize 
the relationship between the order and chaos in it, is 
quite timely, since there is a great variety of  molecules 
in existence. The symmetry of molecules varies from the 
lowest symmetry corresponding to the C 1 (1) point group 
(the common position multiplicity, i.e., the number of 
symmetry operations after which the molecule remains 
invariant, M, is given in parentheses) to icosahedral 
symmetry I h (120). 

One of the key problems in chemistry and physics as 
well as in materials technology is the relationship be- 
tween composition, structure, and properties, which is 
intimately connected to the problem of order and chaos 
and to the relationship between them. Regarding mole- 
cules, their structures and properties in the gas, liquid, 
and solid phases may be substantially dissimilar. The 
condensed solid phase may have a "liquid-like" (for 
example, glassy) structure or a crystalline structure. 
Thus the composition--structure--properties triad should 
be supplemented by an integral numerical (scalar) 
description of a molecule, which would, on the one 
hand, reflect its structure and, on the other hand, char- 
acterize order and chaos and the relationship between 
them. 

Composition 

i (C"a°' / • Structure ~ Number \ ~ /  

Properties 

This would permit not only the comprehensive de- 
scription o f  separate molecules but also their general 
systematization and comparison in various series based 
on modern information theory and the theory o f  molecu- 
lar graphs. 

The above-noted structural physical and chemical 
heterogeneity (complexity, diversity, or inhomogeneity) 
of a molecule reflect the disorder in the arrangement of 
its atoms. In the statistical thermodynamics, disorder is 
usually characterized by the Boltzmann entropy S = 
-k in  IV; however, in our case, this value cannot be used 
if for no other reason than that it refers only to statisti- 
cally big ensembles. This limitation can be overcome by 
switching over to the information entropy introduced by 
Shannon. 10 

N 

n (xi) = - ~ .  Pi(Xi) log2 Pi(Xi), ~ .  Pi = 1, ( I ) 
i=1 

where Pi is the probability of the outcome x i of the 
experiment, which should be calculated in each particu- 
lar case. For example, if only the chemical composition 
of a molecule is taken into account, the calculation by 
Eq. (1) gives the corresponding information index of the 
chemical composition H = lee; and with allowance for 
only the topology of a molecule, which is reflected by its 
structural graph, this calculation affords the information 
topological index H = /top, etc. These indices are ex- 
pressed in terms of information units (bits) and are 
numerical measures of the heterogeneity or structural 
complexity of  molecules. At present, they are widely 
used to establish correlations between structures and 
properties of molecules, mostly for organic and bioor- 
ganic molecules (see, for example, Refs 11--19). In the 
case of  inorgaoic compounds and solids (crystals and 
glasses, including those with defects), which cannot be 
described by a molecular graph, the information topo- 
logical approach has been much more poorly developed. 

The information approach, which uses the Shannon 
entropy of information, is probabilistic. At present, non- 
probabilistic approaches to the determination of infor- 
mation are also being developed. One of these is the 
Kolmogorov approach based on the idea of the epsilon- 
entropy (combinatorial approach) and on the algorith- 
mic determination of the quantity of information, 2°'2t 
the approach of Ingarden and Urbanek, 22 etc. In this 
paper, we also describe a nonprobabilistic approach in 
which the degree of order/disorder is evaluated by a 
procedure based only on geometrical considerations, z3'24 
The application of this method to molecules is consid- 
ered in detail below (in particular, from the standpoint 
of information theory); for this purpose, a new notion, 
viz., geometrical molecular index, is introduced. 

We do not deal with the condensed state of matter; 
however, all the results obtained here can be extended to 
it by treating, for example, a solid as a set of molecules 
"fastened" to the equilibrium positions. With certain 
assumptions, this approach can also be  applied to a 
macroscopic gas or to a liquid, but it is necessary to take 
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into account the fact that in these cases, the analyzed 
state is merely an instantaneous picture of the molecules 
in space. Translational motions of atoms such as diffu- 
sion, which are typical of gases and liquids and also take 
place in real solids, or atomic motions with large ampli- 
tudes (characteristic of glasses) zs and, hence, the corre- 
sponding types of order are not taken into account in 
this approach. 

Cyclic molecules 

Regular polygons 

The index of order is calculated from the formula 23,z4 

3 n - P  P 
O = ~ - i  3n' (2) 

where P is the number of independent coordinates (po- 
sitional parameters), which fix a group consisting of n 
points in an arbitrary system of coordinates. We chose 
the Cartesian coordinates. For example, for n = I (a 
separate point), P = 3 and Q = 0; for a set of n 
randomly arranged points, P = 3n and Q = 0; for a line 
of a specified length (one stable spatial link is intro- 
duced for two points, and thus the P value decreases 
from 6 = 2" 3 for disconnected points to 6 - l = 5 for 
connected points), Q = 0.167; for an isosceles triangle,- 
Q = 0 . I l l ,  etc. In this study, points denote atoms, 
groups of points stand for molecules consisting of n 
atoms, and the spatial links correspond to chemical 
bonds in a molecule. Let us begin with the simplest case 
of regular polygons and molecules represented by them. 

Along with the Q values calculated from Eq. (2), 
Table 1 presents the Schoenflies point groups of symme- 
try and common position multiplicities (in parentheses) 
as well as specific indices of order q = Q/n. We could 
not find exact molecular analogs of regular polygons 
except molecules like S 3 with the D3h symmetry existing 
in the gas phase. The other examples correspond to a 
carbon framework or a metallic framework of a cluster 
without ligands. The order in these molecules is actually 
much higher than in the framework, since, if ligands are 
taken into account, the n value increases. Triangles, 
tetragons, and pentagons are frequently found as faces in 
polyhedral molecules reflected by regular polyhedra. 

The order indices Q and the types of symmetry 
(common position multiplicities) for regular polygons, 
the limiting case of which is a circle with n = co and 
Q = I, vary in parallel but not linearly (see Table I). 

Irregular polygons 

Molecules represented by irregular polygons are fairly 
abundant. 26,27 One should distinguish actually irregular 
polygons in which all the interatomic distances are 
different, and semiirregular polygons, which incorporate 

groups of equal interatomic distances corresponding to 
identical chemical bonds. 

Let us consider the case of irregular polygons in 
relation to the S 9 molecule, which is of interest because 
it is formed not only in the gas phase but also in some 
biological objects and, in addition, it exists in the molecu- 
lar-crystalline state) s Four isomers of this molecule are 
known; three of them have symmetry of  the C s point 
group (a boat, a cage, and a chair) and the fourth isomer 
has C 2 symmetry. All the isomers are characterized by 
equal numbers of symmetry operations (M = 2) and 
identical order indices Q = 1 - 12/(3 • 9) = 0.567. Note 
that the order in the S 9 molecule proves to be much 
lower than in the corresponding regular polygon with 
D9h symmetry, for which Q = I - 7/(3"9)  = 0.741, 
which looks quite reasonable. 

Numerous examples of homoatomic tings represented 
by irregular polygons can be given even for n > 6 (for 
example, the Se82- ion), whereas for regular polygons, 
only rings with n = 3 or C-frameworks (S Jr example, 
CsH 5, C7H7, and C8H8) are known. Thus, transition to 
irregular polygons leads not only to a decrease in the 
symmetry and order but also, as a consequence, to an 
increase in the probability of the occurrence of 
polyatomic molecules. 

Table 1. Symmetry and order indices in regular polygons 

Figure n Symmetry Q q = Q 
/1 

Examples 
of molecules 

(ions) 

3 D3h(12) 0 .222  0.074 S 3 

4 D4h(16) 0 .417  0.104 C4H 8 

(C-framework) 

5 Dsh(20) 0 .533  0.107 CsH 5 

(C-framework) 

6 D6h(24) 0.611 0.102 C6H 6 

(C- framework) 

7 D7h(28) 0 .667  0.095 C7H 7 

(C-framework) 

8 Dsh(32) 0 .708  0.089 CsH 8 

(C-framework) 

co D~h(oo) 1 .000 0.000 -- 
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Chain molecules 

The world o f  chain molecules  is enormous  and em-  
braces all branches of  chemistry.  There exist low-molecu-  
lar-weight monomer i c  and ol igomeric  molecules  incor-  
porating relatively small  numbers  of  a toms and macro-  
molecules with n ~ 103--105, as well as giant polymeric  
m a c r o m o l e c u l e s  con ta in ing  up to 106 a toms,  viz., 
--[CH21.-- type organic molecules  and - - [S (o r  Se)l.-- 
o r - - [ P N C I 2 ]  n -  type inorganic molecules.  

Let us consider  chains of  the - - [ S i n - -  type. Accord-  
ing to exper imenta l  data,  in a po lymer  chain in the 
amorphous  state,  in tera tomic  distances R are fixed pa- 
rameters,  whereas the bond angles and torsion angles 
can vary. For  compar ison ,  we shall consider  the depen-  
dence of  the order  index on the number  o f  a toms in the 
chain for three model  cases (Fig. 1): 
( I )  constant  in tera tomic  distances,  bond angles, and 
torsion angles 

8 
QI = 1 - ~ ;  (3) 

(2) constant  in tera tomic  distances and bond angles and 
varying torsion angles 

n+5 2 5 
Q2 = I 3n - 3 3n'  (4) 

(3) constant  in te ra tomic  distances and varying bond a n d  
torsion angles 

2n+2 1 2 
(23=1-  3n - ' 3  3n" (5) 

Each set o f  the structural  degrees of  freedom (SDF)  
corresponding to Eqs. (3) - - (5)  is described by its own 
curve and by its own limit  of  the Q value, the addi t ion of  
a f u r t he r  S D F  d e c r e a s i n g  l i m Q  by one  th i rd  

O 
1.0 

0.8 I 

j . . . . . . . . . . .  

0.6 / / /  2 2" 

0.2 ..~. ~...~ ,.---~,---" 7 ~ 3" 

0 I I P I I 

3 5 7 9 n 2 3 log n 

Fig. 1. Dependence of the order index on the number of 
atoms in chain molecules. The following parameters in the 
chains are constant: interatomic distances and bond and tor- 
sion angles ( /) ;  interatomic distances and bond angles (2); 
interatomic distances (3). 

( 1~0 .667~0 .333 )  (see Fig. I, curves 1--3). In the hypo- 
thetical  case where all three S D F  are realized, i.e., 
where all angles and distances are variable,  there  is no 
order  (Q = 0), since the number  of  independent  coordi -  
nates (P) in Eq. (2) is 3n. 

in the second and third cases ((22 and Q3), the 
symmetry  of  the chain molecule  as a whole is C I (the 
molecule  is asymmetr ical) ,  whereas an e lementary  unit 
S 3 (angle) has symmetry  of  the C2v point group. Thus, 
the absence o f  symmetry  in polymeric molecules  as a 
whole does not mean that there is no order, since Q > 0. 
in this case, spontaneous ordering occurs, depending on 
the number  o f  structural degrees of  freedom in a poly- 
meric chain of  length n. Giant  polymeric  biomolecules  
can coil into globules or, conversely, can uncoil  into 
polymeric  bundle  filaments as occurs in muscles. Deox- 
yr ibonucleic  acid is a double-s t randed helix in which the 
order  is higher than in a single helix, due to the appear-  
ance of  joints  formed via hydrogen bonds. 

Polyhedral molecules 

Regular polyhedra 

Five regu..,l polyhedra called Platonic solids are 
known: tetrahedron, cube (hexahedron), octahedron,  do- 
decahedron,  and icosahedron. These polyhedra form the 
basis for many molecules (examples of  these molecules are 
cited in Table 2). The number of  atoms in the molecules 
can exceed the number of vertices of  the corresponding 
regular polyhedron,  due to the presence of  a central atom 
(for example,  in the terahedral SiCI 4 or octahedral  SF6) or 
due to replication (for example, BaCI 4 is built in such a 
way that the boron atoms form an inner tetrahedron,  while 
the chlorine atoms constitute the outer tetrahedron).  

Table 2. Symmetry and order indices in regular polyhedra and 
figures based on them 

Polyhedron n Symmetry P 
O Q q = - -  
n 

Examples 
of molecules 

(ions) 

Tetrahedron 4 Ta(24) 7 0,417 0.104 P4, As4 
5 Ta(24) 7 0.533 0,107 CH 4, SiCI 4 
8 Ta(24) 9 0.625 0.078 closo-B4Cl4 

Octahedron 6 Oh(48) 7 0.617 0.103 --  
7 Oh(48) 7 0.667 0.095 SF 6, PC16- 

12 Oh(48) 8 0.778 0.065 closo-[BrHr] 2- 
Cube 8 Oh(48) 7 0.708 0.089 Cubane C8H8 

(C-framework) 
16 Oh(48) 8 0.833 0.052 Cubane CsH 8 

Icosahedronl2 /h(120) 7 0.805 0.067 BI2Ht22- 
(B-framework) 

Dodeca- 20 /h(120) 7 0.883 0.044 Dodecahed- 
hedron rane 

(C-framework) 

40 /h(120) 8 0.933 0.023 Dodecahed- 
rane C20H20 
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Fig. 2. Dependence of the order index on symmetry (M) and 
on the number of atoms (numerals near the points) in mol- 
ecules reflected by regular polyhedra and figures based on 
them (l) and by regular polygons with the Dnh sy-~metry (2). 

In this case, unlike regular polygons, the order index is 
a function of  both symmetry and the number of  atoms in 
the mok-:f le  (see Table 2). For example, in tetrahedral 
molecules with the T d symmetry and M = 24, the Q value 
increases from 0.417 to 0.625 as n increases from 4 to 8. 

To make this more clear, we present the data of_ 
Table 2 as a plot, which is shown in Fig. 2. It can be 
seen that when n > 4 and M > 24, the order index Q is 
much more sensitive to an increase in the number  of  
atoms in a molecule (especially at small n) than to an 
increase in symmetry.  For comparison, Fig. 2 also pre- 
sents the Q = / [ M ( n ) l  dependence for regular polygons. 

Semiregular polyhedral molecules 

Faces of  semiregular polyhedra are regular polygons 
of  various types. Numerous  types of  these polyhedra 
exist, viz., prisms and antiprisms, pyramids and bipyra- 
mids (examples are presented in Table 3). One should 
bear in mind that the coordination polyhedron of  a real 
molecule can deviate somewhat from the prototype 
polyhedron; for example, faces in the polyhedron formed 
by the NH 3 molecule are isosceles rather than equilat- 
eral triangles. 

It can be seen from Table 3 that the main regulari- 
ties are similar to those observed in the previous case, 
i.e., Q =t iM,  n) and Q increases as M a n d  n increase. A 
natural distinction is that, at the same n, the symmetry 
( common position multiplicity) and the order index are 
lower for molecules corresponding to semiregular poly- 
hedra than for those represented by regular polyhedra 
(cf Tables 2 and 3). 

Irregular polyhedra 

Irregular polyhedra are classed as either asymmetri-  
cal (pu;sessing no symmetry)  vc, lyhedra, for which the 

Tsble 3. Order indices in semiregular polyhedral figures 

O 
Polyhedron n Symmetry P Q q==-- Examples 

n of molecules 
(ions) 

Trigonal 4 C3~(6) 8 0.333 0.083 NH 3 
pyramid 5 C3v(6) 9 0.400 0.080 POF 3 

Tetragonal 5 C4v(8) 8 0.467 0.093 closo-[BsHsl- 
pyramid (B-frame- 

work) 

10 C4v(8) I1 0.633 0.063 closo-[BsHsl- 

Trigonal 5 D3h(8) 8 0.467 0.093 -- 
bipyramid 

Trigonal 6 D3h(12) 8 0.445 0.074 PF 5 
bipyramid 
with the 
central 
atom 

Pentagonal 14 Dsh(20) 10 0.762 0.054 closo-[B7H712- 
bipyramid 

Square 10 D4h(16) 9 0.700 0.070 [Re2CIs] 2- 
prism 

Prism 18 D3h(12) 12 0.778 0.043 [Re6CIt21- 
20 D2h(8) 15 0.750 0.038 [TcsCll21- 

symmetry of  the C l point group corresponds to the 
c o m m o n  position multiplicity M = l, or dissymmetrical 
polyhedra, which often posses low symmetry.  The asym- 
metrical figures and many of  the dissymmetrical figures 
are chiral, i.e., their limit figures are a rotating cylinder 
with oo/2 symmetry and a rotating cone with ~ symme-  
try. Numerous  groups o f  the type C n (n = I, 2, 3, 4, 
5...), D n (n = l, 2, 3, 5..0, and O are chiral. 

Intuition suggests that asymmetrical figures with C i 
symmetry should have Q = 0. However, this statement 
is true only for simplest figures, formed by four of  five 
atoms arranged arbitrarily (Table 4). Examples are also 
provided by some triatomic molecules (NOF,  O3) that 
have Cl(l ) symmetry and Q = 0, due to lone electron 
pairs regarded as pseudo-atoms. When the number  of  
atoms increases, identical interatomic distances or iden- 
tical atoms usually arise; an example is provided by the 
C2H4FCI molecule (see Table 4) in which Q > 0 due to 
the fact that P < 3n. This result demonstrates once again 
that in terms of  the model considered, there is no 
unambiguous relationship between symmetry  and order. 
In the present case, order (Q) is a broader concept  
incorporating all the features of  the spatial arrangement 
of  points (atoms), including those, not reflected by 
symmetry.  

Figures with higher symmetries (C n and Dn) with n >__ 
2 are characterized by greater Q values. For example,  for 

the S2CI 2 molecule (C 2 symmetry),  Q = 0.250, whereas 
for tr imethylbenzene (C 3 symmetry),  the value Q = 
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T~llle 4. Asymmetrical and dissymmetrical figures 

Figure* Dimensio- n Symmetry P Q q = Q Molecule 
nality n 

3D 4 C1(I) 12 0 .000  0.000 -- 

o / ~  3D 5 C1(I) 15 0 .000  0 .000  CHFCIBr 

3D 8 Ct(l) 21 0 .125  0 .016  C2H4FCI 

J 2D 4 C2(2) 9 0 .250  0 .063 $2CI 2 

J 
H - - C ~ . . . ~ ( ~ -  ~"------ 3D 35 C3(3) 14 0 .867  0 .025  CHPh 3 

* Equal distances between the points of the figures are marked by dashes. 

0.867 is commensurable with those observed for regular 
polyhedral molecules (see Fig. 2). 

Thus, asymmetrical figures (Ct) can possess certain 
degrees of  order (Q > 0), and in the case of polyatomic 
chiral dissymmetrical figures, the order index may be 
fairly high. This nontrivial result provides the possibility 
of dividing asymmetrical figures (molecules) into disor- 
dered asymmetrical figures (C t, Q = 0) and ordered 
asymmetrical figures (C l, Q > 0), and dissymmetrical 
molecules can thus be classified not only in terms of 
their symmetries but also according to the degree of 
order realized in the arrangement of their points (at- 
oms). 

Order in isomers 

According to the classification of isomerism (see, for 
example, Ref. 27), the most pronounced structural 
changes occur in the case of constitutional isomers, in 
which not only interatomic distances but also the mu- 
tual arrangement of chemical bonds vary. Let us con- 
sider, for example, the isomers of S2F 2. 

F ~ S----S 
F 

F~S--S--F 

C2v(4 ), P = 9, O = 0.250 D,~(~o), P = 7, Q = 0.417 

As shou ld  be expec ted ,  the index  o f  o rde r  is g rea ter  fo r  
the isomer characterized by the higher symmetry. 

The structural differences between geometrical iso- 
mers,  for example,  between cis- and trans- 
1,2-dichloroethylene are less pronounced. 

c\  c l  c k H 
/C----C, /C=C, ,  

H H H CI 

c~ ~ans 

C2v(4), P = 11, Q = 0.389 C2h(4), P = 11, Q = 0.389 

These molecules are characterized by equal order 
indices and equal common position multiplicities, al- 
though the symmetry point groups are dissimilar. The 
invariability of the Q value means that in the present 
case, the index of order reflects the number of symmetry 
operations rather than the symmetry itself. 

Geometrical isomers can exist as individual forms 
(they can be physically separated), since the barrier to 
the internal rearrangement is relatively high. In the case 
where this barrier is low, we deal with the conforma- 
tional isomerism. For example, on passing from dichlo- 
roethylene incorporating a C=C double bond to dichlo- 
roethane with a C- -C  single bond, the possibility of 
rotation around the C- -C axis appears. Consider the 
Newman projections. 

The most symmetrical staggered configuration of the 
molecule with the C2h symmetry, for which Q = 0.500, 
is presented at the left. The lowest C I symmetry and 
Q = 0.416 correspond to an arbitrary arrangement of 
atoms during rotation, i.e., the order substantially de- 
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CI H 

H I CI 
CI CI 

C2h(4 ), P = 12, Q = 0 .500 Ct(1),  P = 14, Q = 0.41~ 

creases during rotation. Thus, the appearance of the new 
(rotational) degree of freedom leads to a decrease in the 
order, similar to what we have observed previously upon 
the addition of structural degrees of freedom in chain 
molecules (see Fig. 1). 

Order in nonrigid molecules 

The above example of internal rotation with a low 
energy barrier, when the isomers cannot be physically 
separated, indicates that the method that we suggest 
makes it possible to describe dynamic structures. Below 
we analyze some types of nonrigid molecules, in which 
inversions, librations, and permutations can occur along 
with rotation. 

Inversions. Let us consider the simplest tetraatomic 
molecule with the C3v symmetry like NH 3 as an ex- 
ample. The base of this molecule is a regular triangle 
consisting of atoms 1, 2, and 3 (A). 

2 

~ 3 1 3 

D3~(12) 

4 

4 @ 
1 3 

C3v(6) 

4" 

C3v(6) 

A: inversion B:  l ibration 

During the inversion, the pyramid formed by atoms 1, 2, 
3, and 4 turns inside out like an umbrella; as this takes 
place, atom 4 occupies position 4" and, in the general 
case, it moves along the line connecting points 4 and 4 '  
and atoms 1, 2, and 3 remain at their positions (are 
fixed). For the initial position, P = 8 and Q = 0.333. 
When atom 4 moves, its momentary fixation requires 
one independent coordinate; therefore, P and the index 
of order are retained. However, the above consideration 
is simplified, since atoms 1, 2, 3 move apart fully 
symmetrically as atom 4 passes through the base of the 
pyramid, and the 1--2, 2--3, and 1--3 distances in- 

crease, although the regular triangle forming the base of  
the pyramid retains its D3~ symmetry. Thus, during the 
inversion, coordinates of all of  the atoms vary, and the 
order index should decrease, if the inversion occurs in a 
gas or in a liquid, the decrease in the Q value is not too 
pronounced, i.e., the simplified description is also suit- 
able. However, if a nonrigid molecule undergoes an 
inversion in a solid, the symmetry substantially de- 
creases due to the effect of the environment. As a 
consequence, the order index decreases considerably, 
perhaps down to Q = 0. 

Librations. Let us consider librations (oscillations of 
atoms accompanied by the deviation of one of them 
from the plane) in relation to a planar tetraatomic 
molecule with D3h symmetry (B). Atoms 1, 2, and 3 
retain their positions, whereas atom 4 executes inversion 
oscillations. The D3h symmetry is not retained, since a 
C3v pyramid arises, and one more independent coordi- 
nate is now needed for the momentary fixation of the 
position of atom 4. In this case, Q = I - 8/(3" 4) = 
0.333, which is lower than the initial Q = 0.417. 

Permutation isomerism. Let us consider the permuta- 
tion isomerism using the Berry rearrangement in the 
PF 5 molecule as an example; the two extreme positions 
are characterized by D3h symmetry (P = 8, Q = 0.556) 
and by C4v symmetry (P = 8, Q = 0.556). If a polyhe- 
dron incorporates a regular polygon in the equatorial 
plane, which coincides with the plane of the mirror 
image m, the common position multiplicity increases as 
the number of vertices increases. Conversely, for all 
regular polygons, irrespective of the number of vertices, 
the number of independent parameters P is 7. 

J 
t S 

s e 
i s , ,  \ - .  

i s  ~,,' 
/ 

Dab(12) C4v(8 ) 

The transition from one state to another does not 
lead to a variation of the order, but the order in the 
intermediate states (in instantaneous pictures) is lower. 

In fact, if we assume that only the phosphorus atom 
retains its position, whereas all the five fluorine atoms 
move, and that three coordinates are required to de- 
scribe momentary positions of each of them, then P = 
3"5 = 15 and Q = I - 1 5 / ( 3 " 6 ) =  0.167. If the 
phosphorus atom also changes its position, then P = 
3"6 = 3hand Q = 0 .  

However, one should take into account that the 
symmetry is determined by more than just the the 
common position multiplicity M. For example, in the 
scheme presented above, the C4v(8) state is more sym- 
metrical from the crystallographic standpoint than the 
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D3h(12) state, since the former possesses a fourfold axis. 
Thus, the index of order Q is very sensitive to the 

static and dynamic isomerism, and correlates well with 
the symmetry: Q decreases as the symmetry decreases; 
however, the order remains unchanged if the common 
position multiplicity does not vary. The appearance of 
new sorts of motion in nonrigid molecules (iibrations, 
inversions, and permutations) is accompanied by a de- 
crease in the symmetry and by a decrease in the order 
index. 

Results and Discussion 

!. Order and symmetry. Since, as shown above, in 
the general case, order varies as a function of both 
symmetry and the number of atoms in a molecule, it 
would be appropriate to consider the dependences of Q 
on each of these parameters separately, with the other 
parameter remaining constant. Now we discuss the de- 
pendence of Q on M at n = const for the simplest tri-, 
tetra-, and pentaatomic figures. 

In triatomic molecules, points (atoms) can be ar- 
ranged either as a triangle (irregular, isosceles, or equi- 
lateral) or on a line (with equal of different arms). 

Sym- Cs(l ) C2v(4 ) D3h(12) C.ov(ao) D.~h(oo) 
metry 
P 9 8 7 7 6 
Q 0 0.111 0.222 0.222 0.333 

The limiting value limQ(M--,oo) is equal to 0.333. 
The data presented above indicate that there exist fig- 
ures with different types of symmetry [ D3h(l 2) or C~v(co)] 
but identical order indices Q. Let us call these figures 
isoorders. 

Let us consider a tetrahedral molecule with central 
atom A in which the initially identical ligands are suc- 
cessively replaced as an example of pentaatomic mole- 

X B B B 

x4 x x4 x x4 c 
X X X D 

Ta(24) C3v(6) C2v(4) CI(I) 

cules. 

Sym- 
metry 
P 
O 

7 9 11 15 
0.533 0.400 0.267 0 

The index of order regularly increases in the CI-*T a 
series with an increase in the common position multi- 
plicity, and reaches the limiting value Q = 0.533 in the 
case of a regular tetrahedron. These results can also 
serve as an illustration of the effect of chemical compo- 
sition on the Q and P/3n values. 

In the case of  tetraatomic molecules, 74 figures can 
be distinguished. We shall consider only the eleven most 

O 
D®hl t O1 03h D4~ rd 

0.4 . . . .  "~" . . . . . . . . . . . .  ~ . . . . . . . . . . . .  .=.::=,4--- 

O.3 C3~//~ " z - ~ - ' ' "  

,c27 G, 
0.2 ,, / , /  , 2  // o.l ! 'c, 

CI I , l i l 

0 5 10 15 20 M 

Fig. 3. Dependence of the order index on symmetry for 
tetraatomic molecules reflected by 2D-polygons (1) and 
3D-polyhedra (2). The horizontal line corresponds to an 
I D-structure at M-,oo. 

typical forms (Table 5, Fig. 3). Among them, molecules 
with different types of symmetry but identical order 
indices can be found; for example Q = 0.417 (the 
limiting value for all dimensionalities) for D~oh, D3h, D4h, 
and T d. Thus, the isoorders, which we discovered above 
as an individual case of triatomic molecules, can also be 
found in more complex molecules. 

In the case of isoorders, the index of order is insensi- 
tive to variations in the molecular symmetry. The oppo- 
site case, i.e., the case where figures with identical types 
of symmetry possess different order indices (we shall call 
them isosymmetrics), is equally interesting. In the exam- 
ple under consideration, this is a polyhedron with C2(2) 
symmetry and Q = 0.167 and a polygon with Cs(2) 
symmetry and Q = 0.083. This implies that in some 
cases, Q can be more sensitive to the molecular struc- 
ture than the symmetry (the common position multi- 
plicity). 

2. Order and the number of atoms in the molecule. 
The dependences of Q on n have already been discussed 
in the consideration of chain molecules and molecules 
having shapes of regular polygons and polyhedra. The 
symmetry of the chain molecules in the noncrystalline 
state, i.e., in the presence of structural degrees of free- 
dom, corresponds to the C I point group, and the Q 
value regularly increases as the number of atoms n 
increases tending to the limiting values limQ = 1.000 
(no SDF), limQ = 0.667 (one SDF), or limQ = 0.333 
(two SDF) (see Fig. 1). 

Figure 4 presents the plot of Q against n at a constant 
symmetry. It can be seen that for figures (molecules) 
based on regular polyhedra, the Q =./(n) dependence is 
essentially the same and varies only slightly upon going 
from one symmetry point group to another (T d, Oh, lh). 
The situation also does not virtually change when we 
consider irregular polyhedral molecules, for example, 
those with the C3v(6) symmetry. 
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TIble 5. Order index and symmetry in planar (2D) and three- 
dimensional (3D) tetraatomic molecules 

(2 Figure* Dimensio- Symmetry P Q q = - -  
nality n 

c• 3D Cl(I) 12 0.0 0 

o ~  2D Cs(2) 11 0.083 0.021 

J 3D (72(2) 10 0.167 0.042 

o ~  2D C~v(4) 9 0.250 0.063 

3D C2v(4) 9 0.250 0.063 

6 ~  3D C3v(6) 8 0.333 0.083 

2D D2h(8) 8 0.333 0.083 

o ~  2D D3h(12) 7 0.417 0.104 

- ~  2D D4h(16) 7 0.417 0.104 

6 ~  3D Td(24) 7 0.417 0.104 

o--f-o o-+-o I D D~oh(oo) 7 0.417 0.104 

* Equal distances between the points of the figures are marked 
by dashes. 

n(P) 
Q 
q 

Cl 
o S ~ 

Cl-~ - --/-'-CI 

N p I ° ,,,,=o " " '  

0 0 
H 

4(8) 5(9) 8(11) 12(12) 
0.333 0.400 0.542 0.667 
0.083 0.080 0.068 0.056 

It can be clearly seen from Fig. 4 that the Q value 
increases as the symmetry increases, while the number 

0.8 

0.6 

o 
1.0 . . . . . . . . . . . . . . . . . . . . . .  

/4 
0.4 

I I I I I I 

0 10 30 50 n 

Fig. 4. Dependence of the order index on the number of 
atoms in a molecule for regular polyhedra and figures based on 
them with the symmetry T a (I), O h (2), and I h (3), and also for 
irregular polyhedra with the C3,, symmetry (4). 

0 

lim Q 

0.8 
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0.2 
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! ! ! i i i i ! i 

y ZT  
~ / I - ~  Oh(48) 

/ ~ Th(24) 

D3h(12) 

i i I 
0.5 1 0 1.5 log n 

Fig. 5. Limiting order indices and symmetry as a function of 
the number of atoms in a molecule. 

of atoms n is constant. The highest symmetry and the 
limiting index of order limQ corresponding to it can be 
found for each n. For example, the types of symmetry 
realized for n = 12 range from C3v(6) with Q = 0.667 to 
lh(120) with Qlim = 0.805. The results of this analysis 
carried out for some n values located in the range from 3 
to 60 are presented in Fig. 5. It can be seen that in 
polyatomic nonchain molecules with n > 20, the order 
indices are high (Q >__ 0.9). As n increases the order 
asymptotically approaches 1.0. The order indices for 
polyatomic clusters (for example, for fullerenes with n >_ 
60) are very high, although they are still lower than the 
values observed in crystals (Q ~ 1.0) possessing typical 
long-range order. 

3. Order and lone electron pairs. The stereochemical 
role of lone electron pairs is well known. The Gillespie 
model of repulsion 29 in its current formulation z7 makes 
it possible to describe a great number of molecular 
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structures. We shall consider the 
ture of  molecule AX 5 during the 
of  ligands X by lone electron 
framework of these views. 

variation of the struc- 
successive substitution 
pairs (E) within the 

Type AX 5 AX4E AX3E 2 AX2E 3 

F 
Sym- D3n(12) C2n(4) C2v(4) D,n(**) 
metry 
P 8 9 8 6 
Q 0.556 0.400 0.333 0.333 

The molecules are shown schematically without pre- 
cise geometrical relations between the bond lengths and 
the angles between bonds. Actually, the following varia- 
tions of  the structure of the molecule occur. 

The initial structure AX 5 is an ideal trigonal bipyra- 
mid. When one of the F atoms is replaced by E, the 
axial bonds become longer than equatorial bonds, and 
the angles deviate from their ideal magnitudes. For 
example, the length of the axial bond in SF 4 is 1.65 A, 
the equatorial bond length is 1.55 A, and the axial and 
equatorial angles are 173 ° and 102 °, respectively. 25 The 
symmetry decreases from D3h(12) to (?20(4). 

The further substitution AX4E-~AX3E 2 does not lead 
to a change in the symmetry, but the order index Q 
decreases. The lone electron pair E affects the Q value 
in two ways. First, as the number of  E increases, the n 
value formally decreases, and, consequently, all other 
factors being equal, Q decreases. Second, the appear- 
ance of E can cause a decrease in the symmetry (the 
common position multiplicity) of  the atomic group and 
a further decrease in the Q value or, conversely, an 
increase in the symmetry and in Q. In the example 
given, the Q value was affected by the first factor, 
because the symmetry did not change. 

Further substitution AX3E2~AX2E3 leads to a highly 
symmetrical figure with an infinity-fold axis of symme- 
try. The increase in the symmetry results in an increase 
in Q, despite the fact that one more atom was lost. Note 
that in this series, we once again come across isosym- 
metrics (AX4E and AX3E2), which arise due to the effect 
of the lone electron pair on the order in the molecule. 

4. Scale of order. Thus, for each molecule in which 
the spatial arrangement of atoms is known, one can 
determine not only the symmetry (the point group and 
the common position multiplicity) but also the index of 
order Q. We have considered numerous examples in 
which Q varied from 0 to 1.0, i.e., molecules occupied 
the whole scale of  the order indices. 

As shown above, symmetry and order supplement 
each other. Two special cases should be distinguished: 
isoorders, i.e., degenerate molecules possessing identical 
order indices but different types of  symmetry (for exam- 
ple, XeF 2 and N H  3 with Q = 0.333), and isosymmetrics, 
i.e., molecules with identical types of symmetry but 

different order indices (for example, NH 3 and W30 9 
with the C3v point group). 

Molecules in which both the order and the symmetry 
are identical can be classified as structurally identical or 
structurally similar molecules. Molecules of the former 
group incorporate equal numbers of  atoms (for example, 
0 3 and FNO molecules, see Table 4, Q = 0, Cm, and 
n = 3), while in the latter case, the numbers of atoms 
are dissimilar (for example, 0 3 and C2H4CIF, n = 3 and 
n = 8, respectively). 

Thus, the introduction of the new structural charac- 
teristic, the index of order Q, provides the basis for a 
new classification of molecules and permits comparison 
of structural features of various classes of chemical 
compounds within a unified scale. 

5. Geometrical information index. We regarded the 
Q value in Eq. (2) as an index characterizing the order 
in the arrangement of atoms in a molecule, while the 
term P/3n was correspondingly regarded as an index 
characterizing disorder. In the present section we ana- 
lyze the geometrical meaning (and, to some extent, the 
physical meaning) of Eq. (2) and of the parameters 
incorporated in it and demonstrate that the term P/3n 
corresponds to the entropy of information, and there- 
fore, it caii be regarded as a geometrical information 
index, and the term Q corresponds to negentropy or 
excess information. 

It was shown above that Q (or I - Q) is the function 
of several parameters 

Q = tiM, n, D, SDF), 

where M is the symmetry point group of the molecule 
expressed in terms of the common position multiplicity, 
SDF is the number of structural degrees of freedom, n is 
the number of atoms, which reflects the complexity of 
the molecule (whether it is a simple di- or triatomic 
molecule or a complex molecule), and D is the dimen- 
sionality of  the molecule, which serves as a measure of 
its physical inhomogeneity, since the dimensionality is 
related to the anisotropy of the molecule. Anisotropy is 
especially significant for I D (chain) and 2D (layered) 
molecules. The dimensionality plays a very important 
role in the theory of spatial order and disorder when it is 
applied to the formation of crystals of  polymers; this was 
reflected in the relevant rules, for example, the rule that 
the spontaneous crystal order cannot exist in 1D- and 
2 D-systems. 5 

Let us analyze the independent variables of the Q = 
t iM, n, D, SDF) function from the viewpoint of the 
information theory. According to the definition given by 
Ashbey, 3° information is a measure of the diversity in 
the system, and according to the Glushkov definition, 3t 
it is a measure of  inhomogeneity and nonuniformity of 
the system. We shall consider the independent variables 
of the function in terms of these definitions. 

In the framework of the approach under considera- 
tion, symmetry can be considered to be a measure of  
structural diversity or structural inhomogeneity, since 
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symmetry operations (symmetry axes and planes and 
inversion center) make it possible to divide the set o f  
atoms constituting a molecule into automorphic groups 
(AMG).  We shall make it clear using the CH2F 2 mol- 
ecule with the C2v symmetry as an example. This mol- 
ecule contains three AMG,  two of  which, [H( I )  and 
H(2)i and IF( I )  and F(2)I, are connected by a twofold 
axis, while the third (the C atom) is located on this axis. 
in this case, the A M G  are distributed over symmetry as 
{2,2,1}. Pay attention to the fact that the atoms in the 
groups are identical (homoatomic) ,  whereas the groups 
themselves are heteroatomic. Thus, symmetry reflects 
the structural nonuniformity and indirectly reflects the 
chemical diversity in the molecule. 

Our analysis indicates that the Q (or 1 - Q) value 
characterizes a molecule fairly comprehensively and 
qualitatively corresponds to the definition of  informa- 
tion as a measure o f  diversity, nonuniformity,  and 
inhomogeneity. In order to verify this tentative infer- 
ence, we shall consider the relationship between the 
parameter P/3n, which in the present case characterizes 
disorder, and the information symmetry index lsym in- 
troduced by Bonchev (see Refs. 13--16); we chose this 
index among the other information indices because it is 
best suited for our geometrical approach. The index Isym 
is calculated taking into account  the distribution o f  
atoms equivalent in symmetry,  i.e., atoms that exchange 
places upon symmetry  operations. Each symmetry op-  
eration involves a particular number  of  atoms in a 
molecule as well as particular groups o f  atoms, viz., 
AMG. 

Let us consider the foregoing in relation to the 
[PtCI4] 2- ion with the D4h symmetry.  It has a fourfold 
axis, which makes it possible to distinguish an A M G  
[CI(!)C1(2)C1(3)C1(4)1 consisting o f  atoms joined by the 
fourfold axis, and an atom (Pt), through which this axis 
passes; thus, the five atoms are characterized by the 
{4,1} symmetry distribution. The /'asy m value for an 
averaged atom is calculated from formula (1); for the 
ion considered, it is equal to 

4 4 l 1 
lsym = - ~- Iog2 ~" -- ~ log2 ~- = 0.722 (bit at.-I), 

Ill and for the whole molecule, /sym = 0.722- 5 = 3.611 (bit 
molec.-I) .  Note that the /sym values characterizing the 
CH 4 and SiCl 4 molecules are the same, although the 
Ta(24) symmetry o f  these molecules differs from D4h(16); 
in other words, in some cases,  /sym is insensitive to its 
main criterion and is degenerate. An analysis carried out 
previously t3-t6 showed that, in addition to the symmetry 
of  the whole molecule, the types of  symmetry of  separate 
groups of  atoms, for example, of  N H 2 groups, etc., should 
also be involved in the calculation (see below). 

m To elucidate the relations between P/3n and /sym, we 
shall first consider molecules consisting of  n = 5 or 
8 atoms (Table 6). Since the limiting magnitude of  
P/3n is 1, in order to ensure better comparison of  the 
values o f  P/3n and ls~m, the symmetry index should also 

Table  6. Information symmetry index and the P/3n value in 
series of penta- and octaatomic molecules 

Mole- Syrn- P AMG l~nn a P/3n I~, m 
cule metry /bit" mole- nlog2n 

cule-I 

Pentaatomic molecules 
[PtCI4] 2- D4h(16) 7 {I,4} 3.611 0.467 0.311 
CH 4 Ta(24) 7 {1,4} 3.611 0.467 0.311 
MeCI C3v(6) 8 {1,3,1} 6.857 0.533 0.591 
CH2F 2 C2v(4) 10 {1,2,2} 7.61l 0.667 0.656 
CH2FBr Cs(2) 12 {1,1,1,2} 9.611 0.800 0.828 
CHFCIBr CI(I ) 15 {1,1,1,1,1} 11.611 1.000 1.000 

Octaatomic molecules 
Cube b Oh(48) 7 {8} 0 0.292 0 
C2H6 D3h(12) 9 {6,2} 6.488 0.375 0.270 
C2H 6 D3a(12) 9 {6,2} 6.488 0.375 0.270 
AI2Br 6 D2h(8) 10 {2,4,2} 12.00 0.417 0.500 
C2H3C13 C3(3) 12 {3,3,2} 12.49 0.500 0.520 
(CH2CI) 2 6"2(2) 15 {2,2,2,2} 16.00 0.625 0.667 
(CHFCI) 2 C,(2) 16 {2,2,2,2} 16.00 0.667 0.667 
EtCI Ct(l) 20 {I,1,1,1,1,1,1,I} 24.00 0.833 1.000 
EtCI Ct(l) 20 {3,1,1,1,1,1} c 20.80 0.833 0.870 

a Taken from the literature, l ab  The figure is presented for 
comparison, c With allowance for the local symmetry of the 
Me group (all the other distributions were obtained neglecting 
the local symmetry). 

be presented in a normalized form. For this purpose, we 
divide the symmetry index by the factor nlog2n. The 
physical meaning of  this factor is the maximum infor- 
mation that can be carried by an asymmetrical  (com- 
pletely chaotic) molecule: ls~ m = 11.610 for n = 5, 

m [s~m = 24.00 for n = 8, etc. The/sym values normalized 
in this way are listed in Table 6. The correlation be- 

ll1 tween P/3n and /sym is shown as a plot in Fig. 6. 

P/3n 
l.O 

0.8 
/ J / 

/ /  J 

0.6 / ~ / . ~  

0.4 J') I , / 
/ /  -- / 

/ / 
0.2 / 

/ /  
0 I I11 0 012 014 016 lsy,,u/nlog2n 

Fig. 6. Correlation of the P/3n parameters and of the normal- 
ized symmetry indices in the case of penta- (/) and octaatomic 
molecules (2) of various types of symmetry. 
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T=ble 7. Information symmetry index and the P/3n value in molecules with the identical 
C2~ symmetry 

n Molecule Dimensio- P P/3n AMG laym a Iog2n i~m 
nality /bit at. -I iol~2n 

3 H."O~'H 2D 8 0.889 {I,2} 0.92 1.59 0.58 

H 
I 

4 F..Br...F 2D 9 0.750 {2,21 1.00 2.01 0.50 

H2C-~CH 2 
S 

8 II 2D 
O 

12 0.50 {2,6} a 0.81 3.01 0.27 

H20~-~OH2 
S 3D 

9 0 4 '~0 12 0.444 {1,2,6} a 1.22 3.18 0.38 

CI 

12 H H 2D 

H 

10 0.278 {4,8} a 0.72 3.60 0.20 

a With allowance for local symmetry (see the Text). 

Now we compare  molecules with identical types of  
symmetry but different numbers o f  atoms. The relevant 
data for molecules whose symmetry corresponds to the 
C2v point group are given in Table 7 and in Fig. 7. In 
this case, we not only normalized the/gym value but also 
calculated /ay m taking into account  the local symmetries 
of  separate groups of  atoms incorporated in the mole- 
cule. z3-z6 The local symmetry can differ substantially 
from the symmetry  point group of  the whole molecule. 
For example, a molecule with C I symmetry can contain 
CH3, NH 2, and other  groups, whose symmetry is higher 
than that of  the molecule itself. For example, the sym- 
metry of  the CH 3 group is C3~. The octaatomic molecule 
C2H5CI (see Table 6) has C l symmetry,  and, with allow- 
ance for the local C3v symmetry of  the CH 3 group, its 
distribution over symmetry  is {3,1,1,1,1,1} instead of  
{I,1,1,1,1,1,1,1}, which would be the case if the local 
symmetry were not taken into account. The values calcu- 
lated taking and not taking into account  the local sym- 
metry are markedly different. For example, if we neglect 
the local symmetry,  molecules with C l symmetry will be 
characterized by different /saym values; however, the 
normalized laym/nlog2 n values will be identical, irre- 
spective of  the number  n (cf. C H F C I B r  and C2H5C1 
molecules in Table 6). Thus, the /ay  m values normalized 
by log2n but not taking into account  the local symmetry 
are insensitive to variations of  n. When the local symme- 
try is involved in the consideration, the degeneracy is 
removed, and the normalized layrn/Iog2n value becomes 
a monotonic  function o f  n, if we ignore the 3D figure 

with n = 9 (see Table 7 and Fig. 7). Note that the/gym 
index for figures of  regular shapes is equal to zero (is 
degenerate). In these figures, all the vertices (atoms) are 
identical; hence, lay m = log(n/n) = 0. An example of  
such a figure is provided by a cube (see Table 6, Fig. 6). 
Unlike /gym, the P/3n value is nondegenerate with re- 
spect to regular figures. 

P/3n 
1.0 / 

/ /  
/ 

O. 8 4 / / /  
/P 

0.6 / / 
/ 

0.4 / 

12 

0.2 ~ /  

/ 
I I I 

0 0 0.2 O.m4 0.6 /ay,Jlog2n 
Fig. 7. Correlation of the P/3n parameters and of the normal- 
ized symmetry indices (lSym with allowance for the local 
symmetry) for molecules with the C2v symmetry and with 
various numbers of atoms n (numerals near the points). 
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Analysis of the data presented in Tables 6 and 7 and 
in Figs. 6 and 7 indicates that the P/3n and ls~m/nlog2n 
values are not identical (as should be expected) but are 
correlated. Therefore, P/3n may be regarded as a special 
information index, namely, geometrical molecular infor- 
mation index 

P 
[scorn = -~. 

The analogy of this value with the symmetry index 
lsy m is due to the fact that both indices take into account 
the symmetry of the molecule: Isym does it by virtue of 
the corresponding AMG, and P/3n is based on the geo- 
metrical consideration of a particular figure/molecule. 
They differ not only in the way in which the symmetry is 
taken into account but also in the method of calculation, 
which is probabilistic (according to the Shannon formula) 
in the case of lsy m and nonprobabilistic (based on analyti- 
cal geometry) in the case of PI3n. The lgeom index 
supplements the information indices kn,,v¢n previ- 
ously !1-19 and can be used to elucidate the composi- 
t ion-structure-property relationships, for example, to 
evaluate entropy, enthalpy, and reactivity, to predict the 
properti~ of molecules, to ac-~mplish target-directed 
syntheses of  molecules with specified properties, 
and to carry out systematization for computerization of 
studies, etc. 

Note that a numerical correlation involving Ismym can 
be obtained only if this index is normalized by nlog2n, 
whereas the index lgeom is actually normalized by 3n. 
This means that /sym refers to the information space, 
whereas /gcom refers to the three-dimentional space of 
Cartesian coordinates. Thus information content can be 
established in the three-dimensional space by using the 
set of independent coordinates (P) needed to fix a 
figure/molecule in this system. 

Taking into account the general formula (2), the 
index of order Q can be written as follows 

lgeom + Q = I. 

Let us analyze the information meaning of this ex- 
pression. Suppose that a degree of freedom associated 
with the "defrosting" of chains or with isomerism or 
librations appears in the molecule. As this takes place, 
P/3n increases, and, consequently, Q decreases; the 
information content increases as the index of order Q 
decreases. Then, while l~eom can be correlated with /sym 
(see Figs. 6, 7) and, hence, with the Shannon entropy 
of information, the order index Q can be correlated with 
the Brillouin negentropy 32 or with excess information. 
The limiting case Q = 1 is matched by a regular polygon 
with an infinite number of sides, i.e., a circle (see 
Table I) or by an infinite chain with fixed SDF (see 
Fig. 1). Real molecules always possess the information 
content P/3n, this content being the greater, the closer 
to the beginning of the scale of order Q = 0, they are 
located. 

q qnl:lX 

.000 
0.08 

0.06 

oo4 165'01 

0.02 / Inm = 5 
1 , I / i 

4 6 8 n 
Fig. 8. Specific order index (I) and order index (2) in regular 
polygons. Here and in Figs. 9 and 10, the values 0.618 and 
0.382 are marked, which correspond to the harmonic ratio of 
"golden cross-section"; arrows show the transition to the corre- 
sponding n and q values. 

6. Specific order index. Above we introduced the 
notion of specific order index q = Q/n and calculated q 
for various figures (see Tables 1--5). Now we shall 
consider the variation of the specific order index as a 
function of the number of atoms (n), symmetry, and 
dimensionality (ID, 2D, or 3D) of the molecule. 

In the simplest case, i.e., in regular polygons (see 
Table 1), an increase in n is accompanied by successive 
increase in the symmetry: Dnh = D3h(12), D4/~(16), etc. 
As this takes place, as Fig. 8 indicates, the order index 
Q regularly increases, while the dependence of the spe- 
cific order index q(n) passes through a maximum, qmax = 
0.107 at nrn = n(qmax) = 5. In the case of regular 
polyhedra (Fig. 9), no pronounced maximum is ob- 
served, but the highest values of q attained in this case 
are close to the qmax value observed for regular polygons 
and are also located in the n = 4--6 region. 

In ordered chains, i.e., in chain molecules in which 
the first interatomic distance and bond and torsion 
angles are fixed, the extremum qmax at n m = 5 and 6 is 
also observed (Fig. 10). Following the successive de- 
frosting of the structural degrees of freedom, the maxi- 
mum value decreases and shifts toward lower n (qmax = 
0.067 at n m = 5 and qmax = 0.042 at n m = 4, Fig. 11, 
curves 2 and 3). 

In the regular figures considered, the symmetry is 
not constant: it is Dnh for polygons and varies from T d to 
1 h for regular polyhedra, in the case of ordered chains 
with fixed interatomic distances and angles, the symme- 
try varies from C2v (if the initial triatomic unit is an 
isosceles triangle) to the alternation of C2h (when the 
number of atoms in the chain is even) and C2v (when 
the number of atoms is odd), on the assumption that the 
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Fig. 9. Specific order index (I) and order index (2) in regular 
polyhedra. 

chains form 2D-structures. The other case, viz., the 
study of the relationship between q and n in series of 
figures/molecules with identical types of symmetry, is 
also of interest. The results of the analysis of such series, 
together with the above-considered case of regular fig- q 
ures and chains, are presented in Table 8. 0.08 

It can be seen from Table 8 that the presence of 
maxima on the q(n) dependences at n m = 4, 5, 6 i s  
typical of  all the groups considered. It is noteworthy that 0.06 
the Q,n = O(qmax) values are located near the middle of 
the 0--1 scale of order indices. More precisely, they are 
located near or are confined between two numbers,  0.04 
0.382 and 0.618, corresponding to the harmonic  ratio of 
the "golden cross-section" (see, for example, Figs. 8--  0.02 
10). A similar si tuation has been observed Is for the 
information topological indices of molecular  graphs of 
heteroorganic compounds.  0 

Now let us consider  a fixed number  of atoms in 
molecules by using, for example, the data of Table 5 for 
n = 4. The types of symmetry vary over a wide range, 
but I D-, 2D- and 3D-structures can be distinguished. It 
can be seen from Fig. 12 that for all dimensionalit ies,  
the same max imum limiting value qmax = 0.104 is at- 
tained as the c o m m o n  position multiplicity increases. 
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Fig. 10. Specific order index (/) and order index (2) in chains 
with fixed SDF, interatomic distances, bond angles, and tor- 
sion angles. 

/ 

! I | ! 

4 6 8 10 12 n 

Fig. 11. Variation of the maximum specific order upon varia- 
tion of the number of SDF. 
The following parameters in the chains are constant: inter- 
atomic distances and bond and torsion angles (1); interatomic 
distances and bond angles (2); interatomic distances (3). 

Table 8. Maximum values of the specific order index (qmax) on the q = fin) dependences and the 
corresponding numbers of atoms n m = n(qmax) and order indices Qra = Q(qmax) 

Parameter Regular Chains with 
figures frozen SDF 

Molecules with identical types of symmetry 

2D 3D Oh(48) Td(24) D4h(16) D3h(12) C3v(6) C2v(4) 

qmax 0.107 0.104 0.093 0.103 0.107 0.104 0.104 0.080 0.067 
n m 5 4 and 6 5 and 6 6 5 4 4 5 5 
Qm 0.533 0.517 0.512 0.617 0.533 0.417 0.417 0.400 0.267 
I - Qm 0.467 0.483 0.488 0.383 0.467 0.583 0.583 0.600 0.733 

Om 1.14 1.07 1.05 1.610 1.14 0.72 0.72 0.67 0.36 
I-Ore 
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Fig. 12. Specific order index in tetraatomic molecules with 
various types of symmetry (M is the common position multi- 
plicity). 

For 2D- and 3D-molecules, the q value increases in a 
similar way as M increases. 

In conclusion, we shall consider the order indices Qm 
corresponding to the maximum values qmax- Firstly, they 
all (except for molecules with the lowest C2v symmetry, 
which provide the only exclusion) fall into the limits of- 
the golden cross-section ratio near the numbers 0.382 
and 0.618. Secondly, a relative Qm/(l - Qm) value can 
be introduced, whose physical meaning is to indicate the 
chaos/order ratio. Two main classes are distinguished: 
groups in which order prevails, Qnd'(I - Qm)>l (in 
Table 8, these are regular polygons, regular polyhedra, 
ordered chains, and molecules with the O h and T d types 
of symmetry) and groups in which disorder prevails (in 
Table 8, these are all groups with symmetry lower than 
O h and Td). 

Let us consider two important results, associated 
with the specific order index and with the number of 
a t o m s  nm(qmax): firstly, the specific order index as a 
function of the number of atoms in a molecule normally 
passes through a maximum at n m = 4 i 6 ,  i.e., on the 
scale of the first coordination sphere; secondly, as the 
number of varying structural degrees of freedom in 
polymeric molecules (interatomic distance, bond angle, 
torsion angle) increases, qmax decreases and nm shifts 
toward lower values. 

Let us compare these results with the nonstrict crys- 
tal-chemical conclusions made from the strict localiza- 
tion theorem reported by Delone et al. 33 for a regular 
system of Delone. 34 Based on this simplified interpreta- 
tion of the localization theorem, it may be claimed that 
long-range order is a consequence of short-range or- 
der. 35 If all atoms in a three-dimensional (3D) space are 
regularly surrounded within the limits of 3--4 coordina- 
tion spheres, long-range order, i.e., an ideal crystal 
arises) 5 In the case of 2D space, the Shtorgin theorem 
states that a regular environment within two coordina- 

tion spheres is needed. 35 When the radius of the identi- 
cal environment decreases, ideal crystal is not formed; 
instead, there occurs twinning, formation of various 
polymorphic modifications, etc. 

Based on the foregoing, it may be concluded that if 
the radius of the identical environment decreases to the 
first coordination sphere, either separate molecules are 
formed rather than condensed polymeric materials (i.e., 
long-range order does not arise either because the size of 
the regular environment in the molecule is too small) or 
long-range order is absent because a condensed noncrys- 
talline state with a short-range order is formed. The 
latter can be clearly seen in the case of polymeric I D 
molecules: as Qm = a(qmax) and qmax decrease and the 
number of SDF increases, the nm(qmax ) number of 
atoms decreases in the series 6 ~ 5 ~ 4  (see Fig. 1 I). 

Thus, molecules and noncrystalline substances can 
be defined as systems in which the regular environment 
of atoms is observed at distances not exceeding the size 
of the first coordination sphere of short-range order. If 
the regular environment is disturbed even in the first 
coordination sphere, only noncrystalline substances can 
be formed. 

We developed a geometrical approach to the descrip- 
tion of the order/disorder in various molecular systems 
and found certain regularities in the variation of the 
order index Q as a function of the number of atoms in a 
molecule, its symmetry, the number of structural de- 
grees of freedom, and dimensionality. It follows from 
the main equation Q = I - P/3n that P/3n can be 
regarded as a relative index of disorder in the system, 
while from the viewpoint of the theory of information, 
the P/3n parameter (P is the number of independent 
variables needed to fix a molecule consisting of n atoms 
in the Cartesian system of coordinates) correlates with 
the Shannon entropy of information and can be inter- 
preted as a geometrical information index. The order 
index Q correlates with negentropy or excess informa- 
tion. Due to the nonprobabilistic method for the evalu- 
ation of information used by us (since the Q values were 
calculated only in terms of the analytical geometry), the 
relationship between the Cartesian three-dimensional 
space (normalization of P by 3n) and information space 
(the normalizing factor used for Isr~m is nlog2n) can be 
established as a correlation between the geometrical and 
symmetry information indices. Therefore, our study can 
be related not only to the structural chemistry of mole- 
cules but also to the branch of mathematical chemistry 
that is based on the theory of information. 

The potential of the approach used by us is by no 
means exhausted within the framework of this study in 
which the following items were simplified or were not 
considered at all. First of all, this method for the 
calculation of the order index in this particular form is 
applicable only torigid structures, whose symmetry does 
not vary. Nevertheless, we managed to use it for the 
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analysis of nonrigid molecules having degrees of free- 
dom like inversions and librations. The development of 
this method toward its application to dynamic structures 
seems fairly interesting. 

We also simplified afortiori a practically important 
problem, i.e., the composition--structure--property cor- 
relation. Despite the fact that this problem is intuitively 
clear and seemingly simple, it is quite complex and, in 
general, has not been solved, in this connection, it is 
pertinent to mention, for example, the permanent dis- 
cussion dealing with the fundamental impossibility of 
unambiguously predicting structure from data on the 
chemical composition. 

We did not consider the special case of quasi-crystals 
as an example of icosahedral systems with long-range 
orientation order in the absence of translational symme- 
try. Complex systems with a chaotic arrangement of 
molecules or systems with oriented molecules like liquid 
crystals also were not analyzed. 

It should be noted that the common classification 
into organic chemistry, in which molecules predomi- 
nate, and inorganic chemistry, in which complex frame- 
work solid substances and compounds predominate, is 
fairly arbitrary, although it reflects largely the specific 
character of these fields of chemistry. This division is 
removed if we proceed to the consideration of meso- 
molecules and supramolecules (dendrites, cascade sys- 
tems, molecular tectonics, etc.) in organic and inorganic 
systems in which the covalent bond is no longer signifi- 
cant; in this case, the levels of the arising problems and 
the ways for tackling them are similar. 36,a7 The descrip- 
tion of supra- and mesomolecules should be associated 
with the use of the theory of information) 7 Therefore, 
we hope that the use of the method that we propose for 
the evaluation of order/disorder in molecular systems 
would permit a fresh glance at some problems relating to 
timely branches of modem science. 
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